UMATILLA PLANNING COMMISSION MEETING AGENDA COUNCIL CHAMBERS SEPTEMBER 29, 2020 6:30 PM

- 1. CALL TO ORDER & ROLL CALL
- 2. PLEDGE OF ALLEGIANCE
- 3. APPROVAL OF MINUTES
 - 3.a September 22, 2020 Minutes Suggested Action: Draft minutes for commission approval.
- 4. UNFINISHED BUSINESS
- 5. **NEW BUSINESS**
 - 5.a Fastrack Inc, Ballard Subdivision (SUB-2-20) Suggested Action: The applicant, Fastrack Inc, request approval of a tentative plat for a residential subdivision to divide 3 existing parcels into 64-lots for residential development and 2 lots for future residential development. The applicant intends to develop the residential lots with single-family dwellings.
- 6. **DISCUSSION ITEMS**
- 7. <u>INFORMATIONAL ITEMS</u>
 - 7.a Livestock Residential Suggested Action: Will be going to council soon
- 8. **ADJOURNMENT**

This institution is an equal opportunity provider. Discrimination is prohibited by Federal law. Special accommodations to attend or participate in a city meeting or other function can be provided by contacting City Hall at (541) 922-3226 or use the TTY Relay Service at 1-800-735-2900 for appropriate assistance.

CITY OF UMATILLA PLANNING COMMISSION September 22, 2020 **DRAFT MINUTES** COUNCIL CHAMBERS

I. CALL TO ORDER: Meeting called to order at 6:31 p.m.

II. ROLL CALL:

- A. **Present**: Commissioners; Boyd Sharp, Keith Morgan, Kelly Nobles, Bruce McLane, Heidi Sipe.
- B. Absent: Jennifer Cooper, Hilda Martinez.
- C. Late arrival:
- D. **Staff present:** Community Development Director, Brandon Seitz and Associate Planner, Jacob Foutz.
- III. PLEDGE OF ALLEGIANCE: Moment of Silence asked for by Chair Sharp
- **IV. APPROVAL OF MINUTES:** Minutes August 25, 2020. Motion to approve with conditions by Commissioner Morgan, seconded by Commissioner Nobles. Motion carried.

V. UNFINISHED BUSINESS:

5.a City of Umatilla Plan Amendment PA-1-20 Suggested Action: The applicant, City of Umatilla, is proposing to amend Chapters 9 of the City of Umatilla Comprehensive Plan. The proposed text amendment of will replace Chapter 9 (Economic Development) in its entirety. Johnson Economics recently completed an Economic Opportunities Analysis and Buildable Lands Inventory for the City of Umatilla. The text amendment will incorporate relevant portion of the Economic Opportunities Analysis, the City's Destination Management Plan and Downtown Vision and Framework Plan.

Chair Sharp reconvened the hearing.

Commissioner McLane declared that his spouse would be presenting and she is representing the applicant. It was determined that there is no conflict of interest.

Chair Sharp asked for the staff report.

Director Seitz explained the applications will build off each other. Explained the Housing Needs Analysis (HNA) will be adopted and replace chapter 9 of the comprehensive plan. Stated that there is a need for large lot industrial land as stated in the HNA. The adoption of the HNA as chapter 9 will allow for large lot industrial land to be added to the City's inventory.

Chair Sharp asked for the applicant's testimony.

Carla McLane of Carla McLane consulting stood to bear testimony as the representative of the Cleaver Land. She stated that the applicant strongly supports the recommendation of adoption for PA-1-20.

Steve Williams employee of Cleaver Land stated he was there to support the process and answer any questions that may come up.

Bob Waldher of Umatilla County planning department stated his support for the applications and plans to hold the hearings at the County level.

Chair Sharp called for a motion to close the hearing of PA-1-20. Motion to close by Commissioner Morgan. Seconded by Commissioner Sipe. Motion Carried 4-0

Chair Sharp called for a motion to recommend approval of PA-1-20. Motion to recommend approval by Commissioner Nobles. Seconded by Commissioner McLane. Motion Carried 4-0

5.b Cleaver UGB Expansion (PA-2-20) Suggested Action: The applicant, Cleaver Land, LLC, is requesting approval of an Urban Growth Boundary Expansion to include approximately 146.69 acres land. The applicant also submitted an Annexation and Zone Change applications with the desired outcome to have approximately 450 acres of land planned and zoned for industrial use. Current use of the property is agricultural. Crops under circle pivot irrigation regularly in rotation are potatoes, onions, corn, and grass seed. Improvements to the property include circle pivot irrigation systems and a general use storage building.

Chair Sharp reconvened the hearing and asked for staff report.

Director Seitz explained there is projected need of 450 acres. The City is not planning on meeting the bare minimum of 400 acres. He explained that a process by the applicant was followed to find areas that can accommodate the need. Three sites were found but only one, Cleaver Land, is the only viable option. This can be found in the staff report.

Chair Sharp asked for the applicant's testimony.

Carla McLane of Carla McLane consulting stood to bear testimony as the representative of the Cleaver Land. She explained what was outlined in the applicants report for PA-2-20.

Chair Sharp asked if what was being proposed to be added to the UGB is all Cleaver Land.

Carla McLane confirmed, and showed on two maps the proposed area to be added to the UGB.

Chair Sharp asked if Umatilla County supported PA-2-20.

County Planner Green stated the county supports the application and will take to their governing bodies upon approval of the Umatilla City Council.

Chair Sharp called for a motion to close the hearing for PA-2-20. Motion to close PA-2-20 by Commissioner Sipe. Seconded by Commissioner Nobles. Motion Carried 4-0.

Chair Sharp called for a motion to recommend approval of PA-2-20. Motion to recommend approval by Commissioner Nobles. Seconded by Commissioner McLane. Motion Carried 4-0

5.c Cleaver Zone Change (PA-3-20) Suggested Action: The applicant, Cleaver Land, LLC, is requesting approval of a Zone Change that would rezone 294 acres of Single Family Residential designation to Light Industrial. The proposed zoning designation of Light Industrial will support the types of uses – data centers, warehousing and light manufacturing – outlined in the Economic Opportunities Analysis completed by Johnson Economics that clearly indicates that the City of Umatilla needs large lot industrial parcels. The applicant also submitted an Annexation and UGB applications with the desired outcome to have approximately 450 acres of land planned and zoned for industrial use. Current use of the property is agricultural. Crops under circle pivot irrigation regularly in rotation are potatoes, onions, corn, and grass seed. Improvements to the property include circle pivot irrigation systems and a general use storage building.

Chair Sharp reconvened the hearing and asked for staff report.

Director Seitz outlined what was in the staff report.

Chair Sharp stated that this would be a legislative application and not a quasi-judicial application.

Director Seitz explained that it was considered both.

Chair Sharp asked for it to be included in the report that it is legislative and was not a decision by the Planning Commission.

Chair Sharp asked for the applicant's testimony.

Carla McLane of Carla McLane consulting stood to bear testimony as the representative of the Cleaver Land. She explained the application is considered as a Quasi-judicial and legislative decision. She explained what was outlined in the applicant's report.

Chair Sharp asked if removing residential land will negatively affect developer in the City of Umatilla.

Director Seitz stated that there are five or more large areas to develop as residential subdivisions. He explained that PA-3-20 will leave more than the required 20-year inventory of residential land.

Chair Sharp called for a motion to close the hearing for PA-3-20. Motion to close PA-3-20 by Commissioner McLane. Seconded by Commissioner Nobles. Motion Carried 4-0.

Chair Sharp called for a motion to recommend approval of PA-3-20. Motion to recommend approval by Commissioner Nobles. Seconded by Commissioner McLane. Motion Carried 4-0

5.d Cleaver Annexation (ANX-1-20) Suggested Action: The applicant, Cleaver Land LLC, seeks approval to have a portion of a public street as well as two tax lots situated in the City of Umatilla's urban growth boundary (after adoption PA-2-20) annexed into the city limits.

Chair Sharp reconvened the hearing and asked for staff report.

Director Seitz explained the annexation would be the final action to bring the subject property into City limits and explained the remained of the staff report.

Chair Sharp asked for the applicant's testimony.

Carla McLane of Carla McLane consulting stood to bear testimony as the representative of the Cleaver Land. She stated this application is the capstone of the application suite. She recommended including the light industrial designation in the recommendation to City Council.

Chair Sharp called for a motion to close the hearing for ANX-1-20. Motion to close ANX-1-20 by Commissioner Sipe. Seconded by Commissioner McLane. Motion Carried 4-0.

Director Seitz recommended to include the zoning designation in the motion.

Chair Sharp called for a motion to recommend approval of ANX-1-20 with the zoning of City Light Industrial. Motion to recommend approval by Commissioner Nobles. Seconded by Commissioner McLane. Motion Carried 4-0

- VI. NEW BUSINESS: NONE
- VII. DISCUSSION ITEMS:
- VIII. INFORMATIONAL ITEMS:

7.a Umatilla Industrial Area Utility Technical Memorandum (March 2020) (J-U-B Engineers) Suggested Action: Review as part of applications

7.b Traffic Impact Analysis (May 2020) (J-U-B Engineers) Suggested Action: Review as part of applications

7.c Economic Opportunities Analysis (October 2019) (Johnson Economics) Suggested Action: Review as part of applications

7.d Housing and Residential Land Needs Assessment (June 2019) (Angelo Planning Group and Johnson Economics) Suggested Action: Review as part of applications

IX. ADJOURNMENT: Adjourned at 7:58pm.

CITY OF UMATILLA PLANNING COMMISSION REPORT AND DECISION FOR

TENTATIVE SUBDIVISION PLAT FOR SUB-2-20

DATE OF HEARING: September 29, 2020

REPORT PREPARED BY: Jacob Foutz, Associate Planner

I. GENERAL INFORMATION

Applicant: Fastrack Inc, 4803 Catalonia Drive, Pasco, WA 99301

Property Owners: Fastrack Inc, 4803 Catalonia Drive, Pasco, WA 99301

Land Use Review: Tentative plat review for a 66-lot subdivision.

Property Description: Township 5N, Range 28, Section 20, Tax Lots 1300, 1700, 2300.

Location: The property is generally located southeast of the Powerline Road

and Sparrow Ave intersection.

Existing Development: The subject property is currently undeveloped.

Proposed Development: To subdivide the property into 66-lots for residential development.

Zone Single-Family Residential (R-1)

Adjacent Land Use(s):

Adjacent Property	Zoning	Use			
North	R1	Single-family dwellings (Hayden River			
		Estates)			
South	R1	Undeveloped land			
East	R1	Undeveloped land			
West	R1	Single-family dwellings			

II. NATURE OF REQUEST

The applicant, Fastrack Inc, request approval of a tentative plat for a residential subdivision to divide 3 existing parcels into 64-lots for residential development and 2 lots for future residential development. The applicant intends to develop the residential lots with single-family dwellings. The proposal must comply with the applicable standards for the Single-Family Residential zoning district (R1) and the Land Division Ordinance (LDO).

III. ANALYSIS

The criteria applicable to this request are shown in <u>underlined</u> text and the responses are shown in standard text. All of the following criteria must be satisfied in order for this request to be approved.

CITY OF UMATILLA ZONING ORDINANCE:

SECTION 10-3A-4: DEVELOPMENT STANDARDS: DIMENSIONAL STANDARDS

Minimum lot area	7,000 square feet	
Minimum lot width	50 feet	
Minimum lot depth	90 feet	
Minimum yard setbacks:		
Front and rear yard	10 feet	
Side yard	5 feet	
Side street yard	10 feet	
Garage	18 feet from any street except an alley	
Maximum building height	40 feet	

(Ord. 688, 6-15-1999; amd. Ord. 840, 9-3-2019)

Findings: No development is proposed at this time and the minimum yard setbacks are not applicable to this request. The minimum lot area, width and depth are applicable to all of the proposed lots. All of the proposed lots meet or exceed the minimum lot standards listed above as shown on the applicant's submitted tentative plat.

Conclusion: All of the proposed lots exceed the minimum lot standards.

CITY OF UMATILLA LAND DIVISION ORDINANCE

SECTION 11-2-6: LAND DIVISION APPROVAL CRITERIA:

No plat for a subdivision or partition may be considered for approval until the city has approved a tentative plan. Approval of the tentative plan shall be binding upon the city and the applicant for the purposes of preparing the subdivision or partition plat. In each case, the applicant bears the burden of proof to demonstrate that the proposal satisfies applicable criteria and standards.

- A. <u>Approval Criteria: Land division tentative plans shall only be approved if found to comply with the following criteria:</u>
 - 1. The proposal shall comply with the city's comprehensive plan.

Findings: The City of Umatilla's Zoning Ordinance (CUZO) and Land Division Ordinance (LDO) implement the comprehensive plan goals and policies. If a request is

found to meet or be capable of meeting the applicable standards and criteria in the CUZO and LDO the request is considered to be consistent with the comprehensive plan.

Conclusion: This request is found to meet or be capable of meeting all of the applicable standards and criterion in the CUZO and LDO as addressed in this report.

2. The proposal shall comply with the I-82/U.S. 730 interchange area management plan (IAMP) and the access management plan in the IAMP (section 7) as applicable.

Findings: The Interchange Area Management Plan (IAMP) extends along U.S. Highway 730 from its intersection with U.S. Highway 395 west to Eisele Drive just west of the U.S. Post Office within City Limits. The property is not within the IAMP area.

Conclusion: The property is not located within the I-82/U.S. 730 IAMP. This criterion is not applicable.

3. The proposal shall comply with the city's zoning requirements.

Findings: The property is zoned R1, the applicable City zoning requirements are addressed above. This request complies with all of the dimensional standards as addressed in this report.

Conclusion: The request is for approval of a subdivision that would result in 66-lots. All of the proposed lots will meet the minimum dimensional standards as addressed in this report.

4. The proposal shall comply with the city's public works standards.

Findings: The City's public works standards are engineering design standards for construction of streets, sidewalks, curbs, water and sewer lines, other utilities, and safety standards for installation of such improvements. The applicant did not submit engineered construction plans for these facilities. Section 11-5-4 of the LDO provides the applicant/developer with the option of submitting engineered construction plans after tentative plat approval has been obtained. Engineered plans for all public facilities serving the proposed development will be reviewed by the public works director for compliance with the City's public work standards. The applicant is required to install these facilities in compliance with the approved plans and to submit a final set of "as-built" plans to the City upon completion of the improvements.

Conclusion: This requirement is best satisfied as a condition of approval that the applicant obtain approval of engineered construction plans for all public works and utility facilities prior to starting construction and to submit final "as-build" drawing after construction is completed.

5. The proposal shall comply with applicable state and federal regulations, including, but not limited to, Oregon Revised Statutes 92, 197, 227, and wetland regulations.

Findings: The CUZO and LDO implement the applicable provision of ORS 92, 197, 227. The subject property does not contain wetlands as shown on the National Wetlands Inventory (NWI) or figure 5-1.2 in the City's Comprehensive Plan. Except as implemented

through the City's ordinance, applicable state and federal regulations will be required to be met as a condition of approval.

Conclusion: This request is found to meet or be capable of meeting all of the standards and criteria as addressed in this report, the proposal will comply with applicable state and federal regulations, as implemented through the City's ordinances. The applicant will be required as a condition of approval to comply with all other state and federal requirements.

6. The proposal shall conserve inventoried natural resource areas and floodplains, including, but not limited to, mapped rivers, creeks, sloughs, and wetlands.

Findings: There are no known wetlands, as identified on the NWI, or flood zones on the subject property. The City of Umatilla's Comprehensive Plan does not identify any significant natural resources on the property and there are no known rivers, creeks or sloughs on the property.

Conclusion: There are no inventoried natural resource areas, waterways, water bodies or floodplain areas to conserve on the property. This criterion is not applicable.

7. The proposal shall minimize disruption of natural features of the site, including steep slopes or other features, while providing for safe and efficient vehicle, pedestrian, and bicycle access.

Findings: The subject property is not identified as having slope in Figure 7.1-2 of the City of Umatilla's Comprehensive Plan. There are no identified natural features on the subject property. The proposed streets, sidewalks and other public facilities will be reviewed for compliance with the City's public works standards which are intended to provide for and protect the public health, safety and welfare.

Conclusion: There are no inventoried or known natural features on the site. Therefore, no disruption of natural feature will occur as a result of the proposed subdivision. Vehicle and pedestrian access will be provided as part of the proposed subdivision; however, these will be reviewed against other applicable standards as addressed in this report. If found to meet or be capable of meeting the standards as addressed in this report the proposed subdivision will comply with this standard.

8. The proposal shall provide adjacent lands with access to public facilities and streets to allow its full development as allowed by the City's codes and requirements.

Findings: The applicants submitted site plan shows a tentative site plan that connects the new subdivision with the existing Hayden River Estates 4 subdivision to the north. It connects to Powerline Road via Eagle Avenue. The tentative plat shows connection points for the land to the east and south allowing for access to adjacent lands.

Conclusion: The applicants submitted plan includes a tentative street layout that complies with City standards and would provide adjacent lands with access to public facilities and streets to allow its full development.

9. The proposal shall be designed with streets that continue or connect to existing and planned land division plats on adjoining properties. All proposed streets shall comply with standards of this Title and the Public Works Standards.

Findings: The proposed subdivision includes a street layout that connects to the adjoining existing property to the north. The street layout clearly connects Ballard subdivision to the existing Hayden River Estates 4 subdivision via Killdeer Ave, Eagle Ave, and Oriole St. All proposed streets will be reviewed through this request and through the public works director's review of engineered construction plans to ensure the streets comply with the City's public works standards.

Conclusion: As addressed above, the proposed subdivision includes a street layout for the property that extends and connects to adjoining lands and existing land division plats. The proposed streets will be reviewed for compliance with the City's street standards as contained in the LDO and reviewed by the public works director for compliance with the City's public work standards.

SECTION 11-4-2: STREETS:

The location, width, and grade of streets shall be considered in their relation to existing and planned streets, to topographical conditions, to public utilities, services, convenience, and safety, and to the proposed use of the land to be served by the streets.

- A. <u>Street Arrangement: The arrangement of streets in and serving land divisions shall:</u>
 - 1. <u>Maximize public safety, access, and minimize out of direction travel by utilizing a grid system or comparable design.</u>
 - 2. Avoid cul-de-sacs, except where there is no other practical alternative to serve a portion of the land area to be divided, due to topographical conditions, existing development, or similar circumstances.
 - 3. Provide for the continuation of existing streets in surrounding areas.
 - 4. Conform to any future street plan, neighborhood plan, or other street plan adopted by the City.

Findings: The proposed subdivision connects to the existing street system found in Hayden River Estates 4. The design will allow for future buildout of the property to connect to the existing street system. The proposed subdivision has five new streets proposed. These will still allow for the future extension of the existing three streets to the next phase of development.

Conclusion: The proposed subdivision provides a layout and design that maximizes public safety and can be extended to serve future phases. The proposed subdivision continues three existing streets and will create five new streets. There are no cul-de-sacs proposed. There are no street or neighborhood plans adopted by the City on adjacent properties.

B. Street Layout and Design:

1. All streets, alleys, bicycle, and pedestrian pathways shall connect to other streets within the land division and to existing and planned streets outside the land division. Streets shall terminate at other streets or at parks, schools, or other public uses within a neighborhood.

Findings: As addressed in this report the proposed streets will connect with three existing streets, Eagle Avenue, Curlew Street, and Oriole Street. The proposed subdivision includes two connection points for the existing streets to be extended to serve the remainder of the property. Eagle Avenue will not continue, although five new connection points for the proposed streets to be extended to serve the remainder of the property.

Conclusion: The proposed subdivision includes a tentative layout that would allow all of the proposed streets to connect to other streets or would allow for the proposed streets to be extended onto lands outside the proposed subdivision.

2. <u>Local streets shall align and connect with other streets when crossing streets with higher</u> level classifications.

Findings: The proposed street will not cross Powerline Road.

Conclusion: The proposed streets will not cross a street with a higher-level classification.

- 3. <u>Cul-de-sacs and flag lots shall only be permitted when the following conditions are</u> demonstrated:
 - a. Existing conditions, such as topographic features, water features, an irrigation canal, a railroad, a freeway, or other condition, that cannot be bridged or crossed prevents the extension of a street.
 - b. The existing development pattern on adjacent properties prevents a street connection.
 - c. An accessway is provided consistent with the standards for accessways.
 - d. A minor street is not a suitable alternative to multiple flag lots (more than 2 adjacent flags) due to size of the site, topographic features, or other physical constraint.

 Findings: No Cul-de-sacs are proposed as part of this application.

Conclusion: No Cul-de-sacs are proposed.

4. <u>Cul-de-sacs shall not exceed four hundred feet (400') in length.</u>

Findings: No Cul-de-sacs are proposed.

Conclusion: No Cul-de-sacs are proposed.

5. Where a land division includes or is adjacent to land that can be divided and developed in the future, streets, bicycle paths, and pedestrian ways shall continue through the full length of the land division to provide connections for the adjacent land.

Findings: The proposed subdivision includes streets that continue through the full length of the proposed subdivision. The proposed streets and pedestrian ways continue through the full length of the land division to provide connections to the adjacent land.

Conclusion: The proposed subdivision is adjacent to lands that can be divided and developed, including the remained of the subject property. The proposed subdivision includes a proposed layout that continue the streets and pedestrian ways throughout the property, and connects to adjacent lands that may be divided and developed in the future.

6. Where proposed lots or parcels in a proposed land division exceed double the minimum lot size and can be redivided, the location of lot and parcel lines and other layout details shall be such that future land divisions may readily occur without interfering with the orderly extension of adjacent streets, bicycle paths, or pedestrian ways. Any building restrictions within future transportation locations, such as future street rights of way or future street setbacks, shall be made a matter of record for the purpose of future land divisions.

Findings: The proposed subdivision would create 64 new residential lots and 2 lots for future residential development on the subject property. The proposed street layout would allow for subsequent land division applications to develop the remainder of the adjacent property.

Conclusion: The remainder of the subject property, the 2 lots for future residential development, would be large enough to be divided in the future. The location and parcel lines are such that future land division may readily occur without interference.

- 7. Where there is a reasonable relationship between the impacts of the proposed development and the public need for accessways, such as direct connections to public schools or parks, the land divider shall be required to publicly dedicate accessways to:
 - a. Connect to cul-de-sacs;
 - b. Pass through oddly shaped or unusually long blocks; or
 - c. Provide for networks of public pedestrian and bicycle paths; or
 - d. Provide access to other transportation routes, businesses, residential, or public uses.

Findings: The proposed subdivision provides for the extension of existing streets and provides access onto Powerline Road, the primary transportation route from the south hill area to downtown via Eagle Ave. There are no existing parks, schools or other public facilities in the area that would require dedication of additional public access.

Conclusion: The proposed subdivision connects to existing streets and provides access onto Powerline Road, a minor arterial and primary north south connector in the south hill area. There are no public schools, parks or other public facilities in the area that would require dedication of additional public access.

- 8. New construction or reconstruction of collector and arterial streets shall include bicycle facilities and pedestrian sidewalks as required by applicable city plans.
- 9. Sidewalks shall be installed along the street frontage of arterial and collector streets and for any street within a multi-family, commercial, or industrial land division by the land divider. Sidewalks on local streets within a subdivision for single-family residential lots shall be provided with the construction of a structure on the lot and shall be completed prior to occupancy of the structure.

Findings: The proposed application includes the creation of new local streets within a single-family residential subdivision. Therefore, installation of sidewalks along the property frontage will be required at time of issuance of a building permit. There is one lot (38) along Powerline Road that is proposed for development. Powerline Road street improvements for lot 38 will be required. Lot 66 is not proposed for development at this time, but will require full street improvements along Powerline Road at time of permit issuance.

Conclusion: Although engineered construction plans were not submitted as part of this application street improvements along Powerline Road, a minor arterial, will require installation of a sidewalk. The proposed internal roads are considered local streets and sidewalks will be required as a condition of approval on a building permit to be installed prior to issuance of a certificate of occupancy.

10. An easement may be required to provide for all or part of sidewalks along one or both sides of a public right of way which lacks width to include sidewalks within the public right of way.

Findings: All of the proposed new streets will be required to dedicate right of way to a current city standard including sidewalks. Powerline Road is a sixty-foot (60') right of way and has sufficient space to include sidewalks within the public right of way.

Conclusion: All of the proposed new streets will be required to meet a current city standard including sidewalks within the public right of way. Powerline Road has sufficient area to accommodate sidewalks within the public right of way.

11. When a sidewalk in good repair does not exist, all applicants for building permits for a new structure or remodeling of more than a minor nature of an existing structure shall, in conjunction with the issuance of a building permit, obtain a permit to construct a sidewalk for the full frontage of the site. No final inspection or certificate of occupancy shall be issued for the building permit until a sidewalk has been constructed in accordance with the permit requirements.

Findings: As addressed in this report new sidewalk along Powerline Road will be required to be installed as part of the street improvements along lot 38 and then lot 66 when developed. All of the proposed roads are considered local streets and installation of a sidewalk will be required as a condition of approval on a building permit.

Conclusion: Sidewalks will be required to be installed along lot 38 on Powerline Road prior to the City accepting the proposed street improvements. All of the proposed local streets will be required to install sidewalks as a condition of approval upon issuance of a building permit.

12. Offsite pedestrian improvements may be required concurrent with a land division to ensure access between the land division and an existing developed facility such as a commercial center, school, park, or trail system. The approval authority must show a reasonable relationship between the impacts of the land division and the required improvement.

Findings: The majority of the proposed subdivision will be located east of Powerline Road. Powerline Road is the primary north/south road that connects the south hill area to downtown. There are no public lands or facilities adjacent to the proposed subdivision to provide access to or that would warrant dedication of off-site pedestrian improvements.

Conclusion: There are no public lands or facilities in the vicinity that would warrant dedication of off-site pedestrian improvements.

13. <u>Structures are not allowed in any dedicated sidewalk areas which will obstruct movements on the sidewalk. The minimum widths of sidewalks shall conform to ADA standards.</u>

Findings: No structures are identified on the preliminary plat. A new structure within a public right of way would be subject to review and approval by the City. All new sidewalks will be required to meet ADA standards.

Conclusion: The tentative plat does not show a structure within an area dedicated for sidewalks or that would obstruct movement on a sidewalk. The applicant's engineered construction plans will be reviewed to ensure new sidewalks meet City and ADA standards.

14. Sidewalks generally shall be parallel to adjacent streets in line and grade, except where existing features or topographical conditions warrant an alternative design.
Findings: As addressed in this report the applicant has not submitted construction plans with this application. However, the applicant has indicated that sidewalks will generally

be parallel to the adjacent street as required by this standard.

Conclusion: As addressed in this report engineered construction drawings have not been submitted as part of this review. The construction drawings will show the location of curb and sidewalks within the new subdivision.

15. All sidewalks shall be adjacent to the curb as specified in the public works standards, unless impractical due to special circumstances of the site or adjacent street.

Findings: This provision seems to create some confusion and conflict with the City's adopted street standards in Section 12.2.510 of the City's Transportation System Plan (TSP) as adopted in the City Comprehensive Plan, specifically figure 12.2-10 and Table 12.2-10. The standards addressed in the TSP were intended to allow for greater flexibility enabling the City to apply sound engineering judgment to determine the appropriate functional classification for new streets. However, the TSP designates an optional planter strip for most road classifications that would provide for detached sidewalks set back from the curb. All of the proposed new streets would be considered local residential streets and are not required to provide a planter strip and will have sidewalks adjacent to the curb. Powerline Road is considered a minor arterial street and includes the optional planter strip.

Conclusion: All of the proposed new streets are considered local residential streets and do not require a planter strip and will have sidewalks adjacent to the curb. A planter strip is identified as an optional improvement for Powerline Road. However, as addressed in the report engineered construction plans will be required to be submitted and approved by the public works director. It is anticipated that proposed improvements will include a planter strip/landscape area but have sidewalks adjacent to the curb to match the existing improvements along Powerline Road to the north.

16. <u>Street trees are required along both sides of new public streets, at a minimum of thirty feet (30') on center, with at least one tree for each new lot or parcel. Street tree locations shall be shown on construction plans and shall generally be located at the edge of the</u>

right of way. Street trees shall be required with building permits for structures on approved lots and shall be installed prior to approval of occupancy.

Findings: Street trees are not identified on the preliminary plat and are typically not show on the construction plans. This criterion is best met through a condition of approval.

Conclusion: Installation of street trees are generally not shown on construction plans or the preliminary plat. The applicant is aware of this requirement and intends to comply. A condition of approval will be imposed requiring street trees to be installed in accordance with this standard prior to issuance of a certificate of occupancy.

- C. Right Of Way And Roadway Widths: Generally, right of way and roadway widths for state highways and county roads shall be determined by these entities. Unless otherwise determined by the city administrator based on the recommendation of the city engineer and public works director, the widths of streets and roadways shall meet the following standards and, in addition, all street construction shall conform to the public works standards:
 - 1. The city administrator may modify the width of a planter strip to accommodate drainage and public utilities.
 - 2. Curbside sidewalks shall be required.
 - 3. <u>Bike lanes and shoulder bikeways along arterial and collector streets shall be five feet (5')</u> wide and shall be provided for each direction of travel allowed on the street.
 - 4. <u>Sidewalk and bicycle path lighting shall be provided in conjunction with new road construction and new development.</u>
 - 5. Wheelchair ramps and other facilities shall be provided as required by the Americans with disabilities act (ADA).
 - 6. <u>Bikeways shall be designed and constructed consistent with the design standards in the Oregon bicycle plan, 1992, and ASSHTO's "Guide For The Development Of Bicycle Facilities, 1991".</u>

Findings: As addressed in this report construction plans were not submitted as part of this request. Installation of improvements within the right of way will be reviewed by the public works director to ensure improvements meet City standards.

Conclusion: The required improvements within the right of way are typically shown on the construction plans not the preliminary plat. As addressed in this report the applicant will be required to submit engineered construction plans to the public works director prior to starting construction. All improvements will be required to meet City standards.

D. Reserve Strips: Public reserve strips or street plugs controlling access to streets may be approved where necessary for the protection of the public welfare or of substantial property rights.

Findings: The use of public reserve strips or street plugs is not proposed nor has the City identified the need for such access control measures.

Conclusion: No reserve strips or street plugs are proposed. This criterion is not applicable.

E. Alignment: Streets other than minor streets shall be in alignment with existing streets by continuations of the centerlines. Staggered street alignment resulting in "T" intersections

shall be avoided and in no case shall the distance between centerlines of offset streets be less than two hundred feet (200').

Findings: The proposed streets are in alignment with existing streets by the continuation of the centerlines. Three "T" intersections are proposed and are necessary to create a function road system within a neighborhood.

Conclusion: The proposed streets and future street layout is designed to connect to existing and proposed future streets. No "T" intersections that could be aligned to form continuations of existing streets are proposed and the distance between off set streets is not more than two hundred feet (200').

F. Future Extension Of Streets: Streets shall be extended to the boundary of the land division. A temporary turnaround may be required for emergency vehicle access if a dead end street results.

Findings: All of the proposed streets extend to the boundary of the proposed subdivision. There are seven dead end streets that will be extended in future development phases. Temporary turnarounds for the dead-end streets will be required as a condition of approval.

Conclusion: Seven dead end streets are shown on the preliminary plat. However, the deadend streets are part of a future street extension. In addition, all dead-end streets do not serve as the primary access to any proposed lots. Temporary turnarounds for the dead-end streets will be required as a condition of approval.

G. Intersection Angles: Streets shall be laid out to intersect at right angles as nearly as practical.

In no case shall the intersection angle be less than seventy five degrees (75°). The intersection of arterial or collector streets with other arterial or collector streets shall have at least one hundred feet (100') of tangent adjacent to the intersection. Other streets, except alleys, shall have at least sixty feet (60') of tangent adjacent to the intersection.

Findings: The layout of the proposed street are nearly at right angles. No new arterial or collector street are proposed.

Conclusion: The proposed street intersections are laid out at nearly right angles.

H. Existing Streets: When existing streets adjacent to or within a site have widths less than city standards, additional right of way shall be provided with the land division.
 Findings: The three existing streets within the site and the one adjacent have widths that meet city standards. No additional right of way will be needed in this capacity.

Conclusion: The three existing streets within the site and the one adjacent have widths that meet city standards. No additional right of way will be needed in this capacity.

I. Partial Street Dedication And Improvements: Half streets shall be avoided wherever possible. A partial street dedication may be permitted when a land division abuts undeveloped property which is likely to dedicate the remainder of the street. At minimum, two-thirds (²/₃) of the street dedication and improvement shall be required for any partial street to accommodate two (2) travel lanes, one parking lane, and sidewalk on one side. Reserve strips and street plugs may be required to preserve the objectives of the partial street.

Findings: No partial street dedications/improvements are proposed.

Conclusion: No partial street dedications or improvements are proposed. This criterion is not applicable.

J. Street Names: Except for extensions of existing streets, no street name shall be used which will duplicate or be confused with the name of existing streets. Street names and numbers shall conform to the established pattern in the city, applicable requirements, and shall be approved by the city.

Findings: There are five new streets and three existing in the proposed development. Eagle Ave, Curlew, and Oriole Street are continuations from the adjacent "Hayden River Estates 4" subdivision. The five new streets are labeled Road A, B, C, D, E on the tentative plan lot layout.

Conclusion: The five new streets labeled as Road A, B, C, D, E will need to be renamed with names that meet the above criteria. Therefore, the applicant will need to submit five new street names to be approved by the City and shown on the final plat.

K. Grades And Curves: Centerline radii of curves shall not be less than three hundred feet (300') on arterial streets, two hundred feet (200') on collector streets, or one hundred feet (100') on local streets. Grades shall not exceed six percent (6%) on arterials, ten percent (10%) on collector streets, or twelve percent (12%) on any other street.

Findings: The submitted tentative plat show no centerline curve radius for the proposed streets. All of the proposed streets are considered local streets, and are straight. The grade of the streets is not shown on the tentative plan. The required construction plans will show grade of all of the proposed streets.

Conclusion: The required construction plans will be reviewed to ensure compliance with city standards including grade.

L. Streets Adjacent To Railroad Rights Of Way: Wherever the proposed land division includes or is adjacent to a railroad right of way, provisions may be required for a street approximately parallel to and on each side of such right of way at a distance suitable for the appropriate use of the land between the streets and the railroad. The distance shall be determined with due consideration at cross streets of the minimum distance required for approach grades to a future grade separation and to provide sufficient depth to allow vegetative or other screening to be placed along the railroad right of way.

Findings: The proposed land division does not include and is not adjacent to a railroad right-of-way.

Conclusion: There are no railroad rights-of-way included or adjacent to the proposed subdivision. This criterion is not applicable.

M. Marginal Access Streets: Where a land division abuts or contains an existing or proposed arterial street, the city may require marginal access streets, reverse frontage lots with additional depth, screen planting or other screening contained in a nonaccess reservation along the rear or side property line, or other treatment necessary for adequate protection of

residential properties and to afford separation of through and local traffic. Alleys are acceptable as a means of providing access to lots or parcels fronting state highways or county roads.

Findings: Two lots in the proposed subdivision abut Powerline Road a minor arterial street. As addressed in this report the applicant intends to provide a sidewalk, landscaping/planner strip and permeant barrier along powerline road for lot 38 and lot 66 at time of issuance of building permit. The applicant intends to provide a design consistent with similar barriers located along Powerline Road to the north of the property.

Conclusion: Construction plans were not submitted as part of this application but the applicant intends to provide a barrier including sidewalks, landscaping and a fence along the street frontage of Powerline Road for lot 38. Final design and approval will be included as part of the public works director review of the required engineered plans.

N. Alleys:

- 1. <u>Alleys shall be provided in commercial and industrial districts, unless other permanent provisions for access to off street parking and loading facilities are approved by the city.</u>
- 2. Alleys are encouraged to serve residential development that front along state highways or county roads to minimize congestion and traffic hazards.
- 3. The corners of alley intersections shall have a radius of not less than two feet (2'). **Findings:** There is no commercial or industrial district within the area of the proposed subdivision. The proposed subdivision does not front along a state highway or county road. This criterion does not apply.

Conclusion: There is no commercial or industrial district within the area of the proposed subdivision. The proposed subdivision does not front along a state highway or county road. This criterion does not apply.

SECTION 11-4-3: BLOCKS:

The length, width, and shape of blocks shall take into account the need for adequate lot size and street width. No block shall be more than eight hundred feet (800') in length between street corner lines, unless it is adjacent to an arterial street or unless justified by the location of adjoining streets. The recommended minimum length of blocks along an arterial street is one thousand six hundred feet (1,600'). Any block over eight hundred feet (800') in length may be required to provide pedestrian connections through the block and crosswalks dedicated and improved to city standards.

Findings: The proposed subdivision would in essentially create two new blocks and continues an existing one. The proposed blocks are approximately 300 feet by 200 feet. The proposed blocks are less than 800' in length.

Conclusion: As addressed in this report all of the proposed lots will be less than the maximum block dimensions. All of the proposed blocks will be less than 800 feet in length.

SECTION 11-4-4: EASEMENTS:

A. <u>Utility Lines: Utility lines shall generally be located within public rights of way unless other provisions are required to meet the specific needs of a particular utility provider. A ten foot (10') wide easement for public and private utilities shall be provided along property frontages</u>

(measured from the right of way line) and a six foot (6') wide easement for public and private utilities shall be provided along side and rear lot lines, except as otherwise approved by the city administrator.

Findings: The applicant is proposing to dedicate a ten foot (10') public utility easement along all property frontages including side and rear lot lines.

Conclusion: The applicant is proposing to dedicate a ten foot (10') public utility easement along all property frontages including side and rear lot lines.

B. Watercourses: If a land division is crossed by or adjacent to a natural water body, an easement conforming to the riparian area shall be provided to protect the watercourse. **Findings:** The proposed subdivision is not crossed or adjacent to a water body.

Conclusion: The proposed subdivision is not crossed or adjacent to a water body. This criterion is not applicable.

11-4-5: LOTS:

Lot and parcel size, shape, and orientation shall be consistent with the applicable zoning district and for the type of use contemplated. No lot or parcel dimension shall include the adjacent public right of way.

A. Through lots with public streets on both front and rear or both sides shall be avoided except when essential to provide separation of residential development from adjacent arterial or collector streets. An easement at least five feet (5') in width shall be located adjacent to the right of way and there shall be no right of access to the major street. A permanent barrier may be required along the right of way, within the easement.

Findings: There are no through lots with public streets on both front and rear.

Conclusion: There are no through lots with public streets on both front and rear. This criterion is applicable.

B. Lot and parcel side lot lines shall be at right angles to fronting streets or radius to curved streets to the extent practical, in order to create lots and parcels with building sites which are nearly rectangular.

Findings: All of the proposed lots as show on the submitted preliminary plat are nearly rectangular in shape and will provide building sites which are rectangular in shape.

Conclusion: All of the proposed lots will provide a rectangular building area.

C. Lots shall have a width to depth ratio not to exceed 2.5.

Findings: As shown on the submitted preliminary plat all of the proposed lots do not exceed a width to depth ratio of 2.5.

Conclusion: As shown on the submitted preliminary plat all of the proposed lots will have a width to depth ratio no exceeding 2.5.

D. All lots and parcels shall have a minimum street frontage on a public street of fifty feet (50'), except that lots or parcels fronting a cul-de-sac or curved street may have a minimum street

frontage of forty feet (40'), so long as the minimum lot width required by the zoning district is provided at a distance equivalent to the required front yard setback.

Findings: As shown on the submitted preliminary plat all of the proposed lots will have a minimum street frontage on a public street of fifty feet (50').

Conclusion: As shown on the submitted preliminary plat all of the proposed lots will exceed the minimum street frontage standards.

- E. Flag lots shall not be acceptable for land divisions, but may be approved if the following circumstances apply:
 - 1. For one or two (2) lot land divisions when it is not practical to create or extend a public street or partial public street due to the nature of surrounding development.
 - 2. When topographic conditions or other physical constraints make it impractical or infeasible to create or extend a public street.
 - 3. When the size and shape of the site limit the possible arrangement of new lots or parcels and prevent the creation or extension of a public street.
 - 4. When allowed, the flag portion of a new lot shall have a minimum width of fifteen feet (15') to accommodate a driveway a minimum of twelve feet (12') wide. Two (2) adjacent flag lots may reduce the street frontage and pole width to twelve feet (12') wide, if joint access easements are created and a driveway is provided with a minimum width of twenty feet (20').

Findings: No flag lots are proposed as part of this application.

Conclusion: No flag lots are proposed as part of this application. These criteria are not applicable.

<u>City of Umatilla Zoning Ordinance Section 10-11-10(D) Traffic Impact Analysis Requirements and Approval Criteria</u>

Section 10-11-10(B) of the City of Umatilla Zoning Ordinance (CUZO) requires a Traffic Impact Analysis (TIA) to be submitted with a land use application when certain conditions apply. Subsection 10-11-10(B)(b)(1) identifies an application with an increase in site traffic volume generation by two hundred fifty (250) average daily trips (ADT) or more as one of the conditions in which a TIA is required to be submitted. The applicant submitted a 66-lot subdivision application that will increase site traffic volume by more than 250 average daily trips. The applicant submitted a Traffic Impact Analysis report with the Subdivision application.

Section 10-11-10(C) specifies that a TIA must be prepared by an Oregon Registered Professional Engineer that is qualified to perform traffic engineering analysis.

Section 10-11-10(D) lists the following criteria under Section 10-13-3 of the Zoning Ordinance that must be satisfied and supported with findings and reasons as to how each criterion is met in order for this request to be approved.

1. The Traffic Impact Analysis was prepared by an Oregon Registered Professional Engineer qualified to perform traffic engineering analysis.

Findings: The Traffic Impact Analysis (TIA) submitted with the subdivision application shows it to have been prepared by the engineering firm, PBS, and is stamped by John Andrew Manix, who is both an Oregon Registered Professional Engineer and a Washington Registered Professional Engineer.

Conclusion: The Traffic Impact Analysis submitted with the land use application was prepared, reviewed and approved by an Oregon Registered Professional Engineer. This criterion is met.

2. If the proposed action shall cause a significant effect pursuant to the Transportation Planning Rule, or other traffic hazard or negative impact to a transportation facility, the Traffic Impact Analysis shall include mitigation measures that meet the City's Level-of-Service and/or Volume/Capacity standards and are satisfactory to the City Engineer, and ODOT when applicable.

Findings: According to the Traffic Impact Analysis (TIA) submitted by the applicant, development associated with the proposed single-family residential subdivision will have an impact on existing traffic facilities, as determined by the Level of Service (LOS) at the main intersections of Powerline road in the vicinity of the subject property. A review of the TIA by the City of Umatilla's engineer of record, JUB, states "The intersection of US 730 and Powerline Road is forecast to provide Level of Service "F" with the proposed developments in 2030.". There are several mitigation scenarios presented in the TIA submitted by the applicant. JUB states in their comments that "Installation of a traffic signal or roundabout will achieve the required LOS (level of service) standards." As stated in the applicants TIA "further consultation between city staff and ODOT to determine the ultimate intersection control and configuration" will need to happen. The applicant should contribute an amount (57% is found in the TIA on page VI) based on the increase of traffic caused by their development. In addition to this the TIA and JUB recommend that the City reduce the speed limit on Powerline Road to 35 MPH along the development frontage. The Study shows a need for five left turn lanes at four intersection along Powerline Road. The Study makes the recommendation to not install left turn lanes, whereas JUB states "It appears that the corridor may be well served with a two-way left-turn lane (TWLTL), at least through the areas of the proposed development where there are several local street connections."

Conclusion: As demonstrated by the TIA, mitigation of traffic impacts will be required for the Ballard Subdivision. The applicant will contribute 57% of the costs relating to the traffic mitigation affecting the Powerline Road/Highway 730 intersection caused by this development. In addition, 57% of the cost to construct five left turn lanes along Powerline Road. This will be enforced by a signed development agreement between the applicant and City, before the final plat is recorded. The City has already reduced the speed on Powerline Road to 35 MPH along the development frontage.

- 3. The proposed site design and traffic and circulation design and facilities, for all transportation modes, including any mitigation measures, are designed to:
 - a. Have the least negative impact on all applicable transportation facilities;
 - b. Accommodate and encourage non-motor vehicular modes of transportation to the extent practicable;

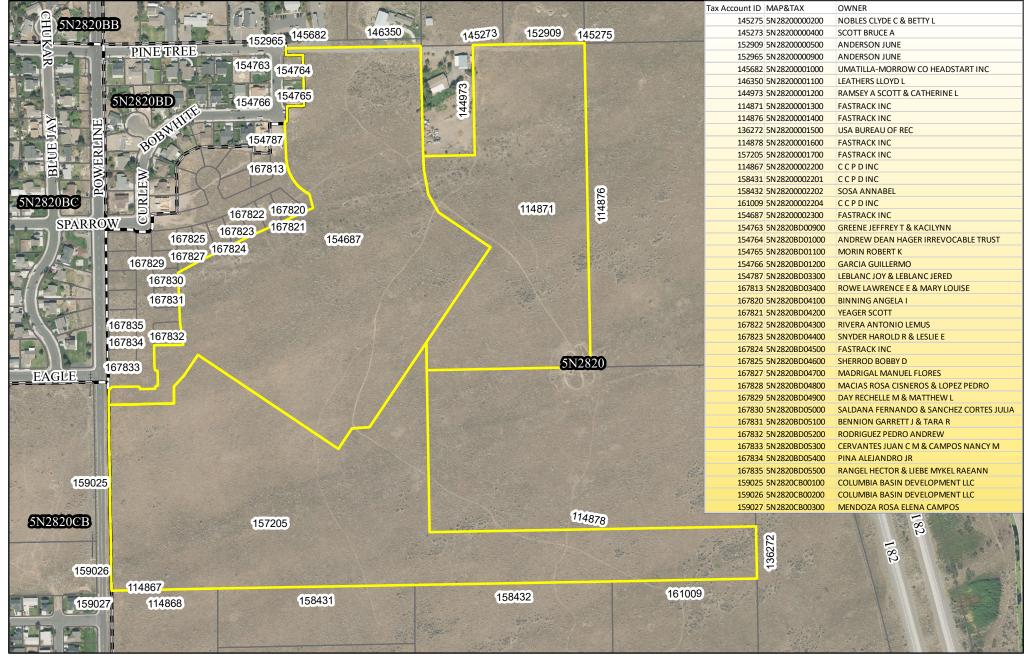
- c. Make the most efficient use of land and public facilities as practicable;
- d. Provide the most direct, safe and convenient routes practicable between on-site destinations, and between on-site and off-site destinations; and
- e. Otherwise comply with applicable requirements of the City of Umatilla Code.

Findings: The proposed subdivision site design and traffic design are able to be considered as having a low negative impact on transportations facilities. The negative impacts to the transportation facilities such as Powerline Road come from the number of trips that will be taken by the residents living in the proposed subdivision, this is a normal and expected consequence of residential growth. The actions listed above will allow for effective mitigation of the negative impacts to applicable transportation facilities. With the installation of sidewalks in the neighborhood and along the frontage of Powerline Road it can be reasonably assumed that the site and traffic design accommodate and encourage non-motor vehicular modes of transportation to the extent practicable. The site plan of the proposed subdivision is able to be considered as making efficient use of land and public facilities and providing the most direct, safe and convenient routes practicable between on-site destinations, and between on-site and off-site destinations.

Conclusion: As shown above the proposed site design and traffic and circulation design and facilities meet the criterion.

IV. PUBLIC COMMENT, SUMMARY AND DECISION

This request by the applicant, Fastrack Inc., for tentative subdivision plat approval for a 64-lot subdivision and 2 future residential lots on property in the Single-Family Residential (R-1) Zone appears to meet, or be capable of meeting with appropriate conditions of approval, all of the applicable development standards of the City of Umatilla Zoning Ordinance and the criteria and development standards in the City of Umatilla Land Division Ordinance. Therefore, based on the information in Sections I and II of this report, and the above criteria and standards, findings of fact and conclusions contained in Section III, this request, SUB-2-20, for tentative subdivision plat approval to create a 64-lot subdivision and 2 future residential lots on property in the Single-Family Residential (R-1) Zone is **APPROVED**, subject to the conditions of approval contained in Section V of this report.


V. CONDITIONS OF APPROVAL

- 1. The final plat must be approved and recorded within one year from the date of this approval. The final subdivision plat must comply with the requirements of ORS chapter 92, and the requirements under Section 11-3-1 and 11-3-2 of the City of Umatilla Land Division Ordinance which the City will use as a checklist.
- 2. The applicant/developer shall submit a preliminary copy of the preliminary plat to the County Surveyor and GIS Department for review prior to submitting the final plat to the City.

- 3. The applicant/developer shall submit engineered construction plans for streets, water, sewer, street lighting and all other improvements within the street rights-of-way to the City Public Works Director for review and approval. No construction shall begin until the construction plans have been approved.
- 4. Street trees shall be provided as required by the Land Division Ordinance and shall be required as a condition of approval on each building permit issued for a dwelling within the subdivision.
- 5. Street names approved by the City shall be shown on the final plat. No street name will be approved that is confusing, offensive or duplicates or sounds too similar to existing street names within the urban growth boundary.
- 6. If any historic, cultural or other archaeological artifacts, or human remains are discovered during construction the applicant shall immediately cease construction activity, secure the site, and notify appropriate agencies including but not limited to the City of Umatilla, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Cultural Resources Protection Program.
- 7. The applicant, or applicant's construction contractor, must obtain all federal, state and local permits, prior to starting construction.
- 8. The applicant shall be responsible for ensuring that all areas disturbed within existing street rights-of-way by construction are returned to their pre-construction condition or better after construction or installation of required improvements.
- 9. The applicant shall submit a copy of the final recorded plat of the subdivision and 'asbuilt' drawings of all required improvements to the City of Umatilla.
- 10. No building permit for a dwelling will be issued until final plat approval of the subdivision has been obtained and recorded in the Umatilla County Records Office.
- 11. Temporary turn-arounds will be constructed for the seven dead end streets to allow for Emergency vehicle access.
- 12. A signed development agreement for mitigation of impacted traffic facilities will be signed by the applicant and City prior to final plat approval by The City of Umatilla.
- 13. Failure to comply with the conditions of approval established herein may result in revocation of this approval.

VI. EXHIBITS

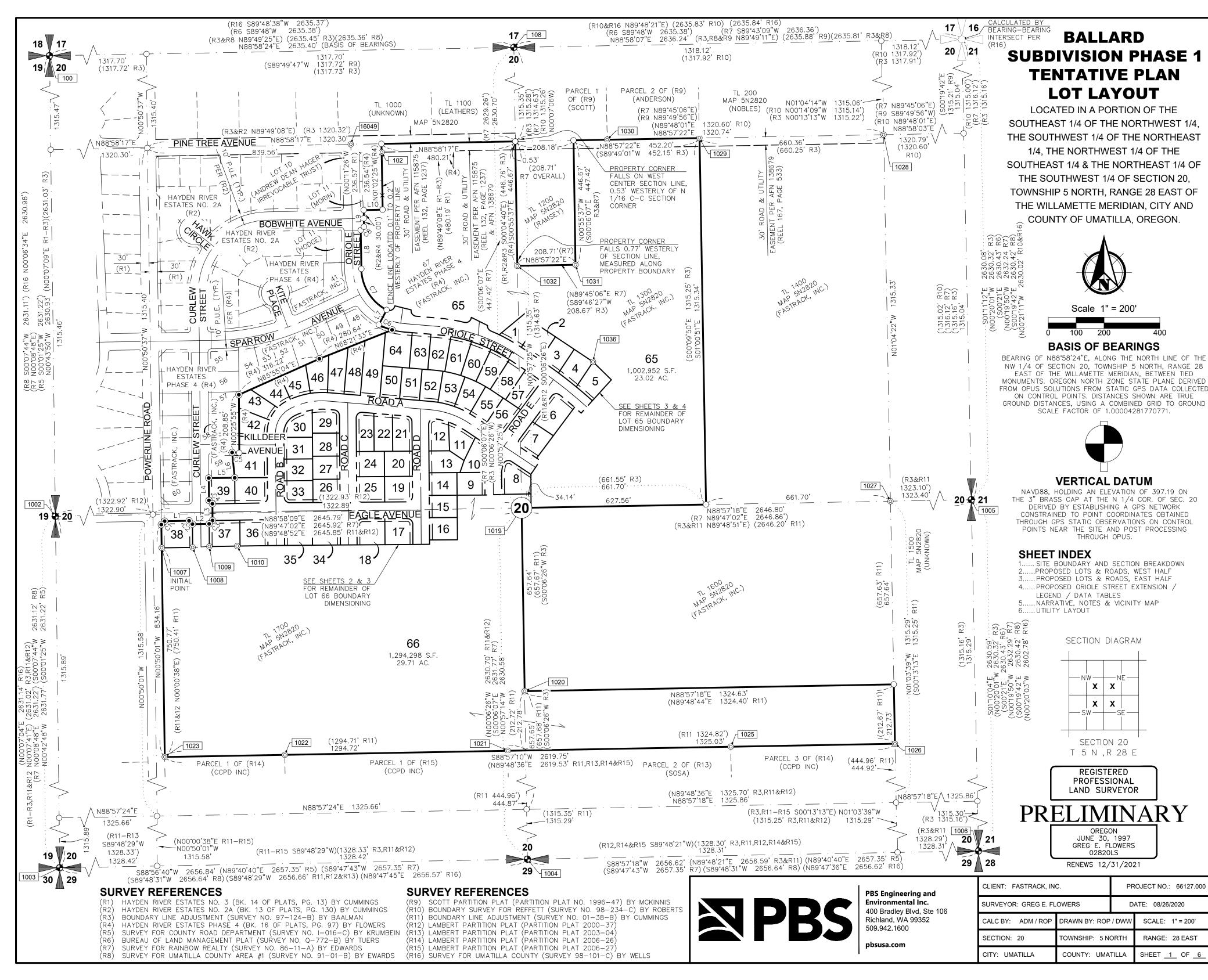

Exhibit A Notice Map Exhibit B Tentative Plat Exhibit C Applicants TIA Exhibit D JUB Comments

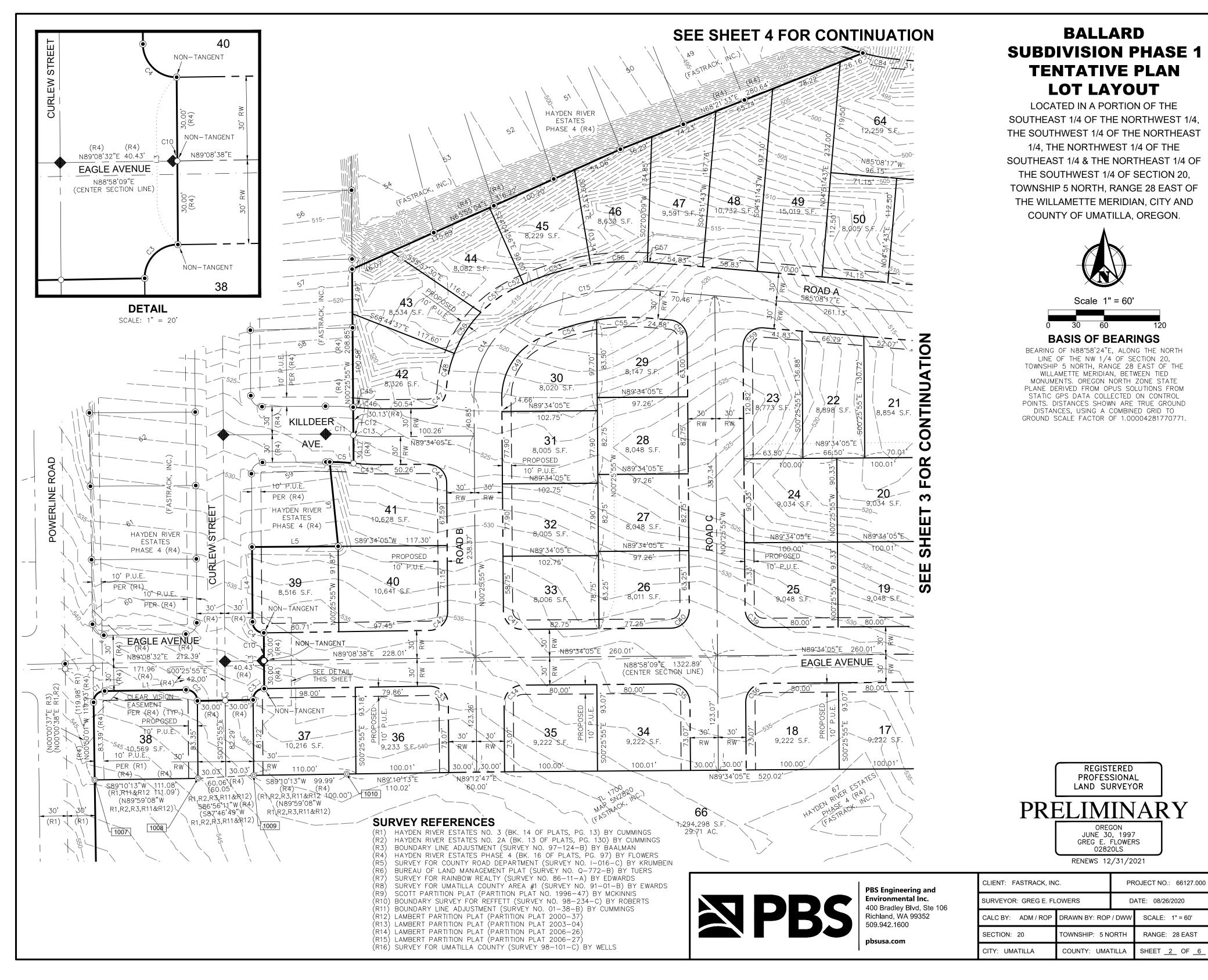
Fastrack Inc, Ballard Subdivision(SUB-2-20)

Legend

Subject Property Tax Lots 8/26/20

0


MAP DISCLAIMER: No warranty is made as to the accuracy, reliability or completeness of this data. Map should be used for reference purposes only. Not survey grade or for legal use. Created by Jacob Foutz, on 9/2/2020


Feet

400

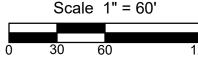
600

800

(R11) BOUNDARY LINE ADJUSTMENT (SURVEY NO. 01-38-B) BY CUMMINGS

(R16) SURVEY FOR UMATILLA COUNTY (SURVEY 98-101-C) BY WELLS

(R12) LAMBERT PARTITION PLAT (PARTITION PLAT 2000-37)


(R13) LAMBERT PARTITION PLAT (PARTITION PLAT 2003-04) (R14) LAMBERT PARTITION PLAT (PARTITION PLAT 2006-26)

(R15) LAMBERT PARTITION PLAT (PARTITION PLAT 2006-27)

BALLARD SUBDIVISION PHASE 1 TENTATIVE PLAN LOT LAYOUT

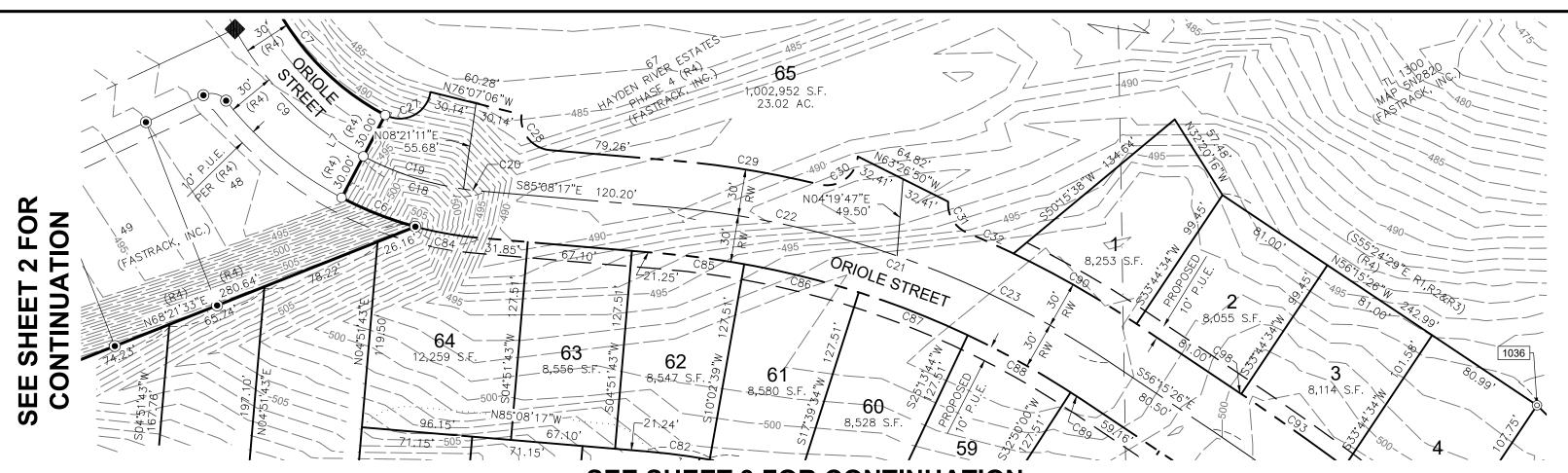
LOCATED IN A PORTION OF THE SOUTHEAST 1/4 OF THE NORTHWEST 1/4, THE SOUTHWEST 1/4 OF THE NORTHEAST 1/4, THE NORTHWEST 1/4 OF THE SOUTHEAST 1/4 & THE NORTHEAST 1/4 OF THE SOUTHWEST 1/4 OF SECTION 20. TOWNSHIP 5 NORTH, RANGE 28 EAST OF THE WILLAMETTE MERIDIAN, CITY AND COUNTY OF UMATILLA, OREGON.

BASIS OF BEARINGS

BEARING OF N88°58'24"E, ALONG THE NORTH LINE OF THE NW 1/4 OF SECTION 20. TOWNSHIP 5 NORTH, RANGE 28 EAST OF THE WILLAMETTE MERIDIAN, BETWEEN TIED MONUMENTS. OREGON NORTH ZONE STATE PLANE DERIVED FROM OPUS SOLUTIONS FROM STATIC GPS DATA COLLECTED ON CONTROL POINTS. DISTANCES SHOWN ARE TRUE GROUND DISTANCES, USING A COMBINED GRID TO GROUND SCALE FACTOR OF 1.00004281770771.

> REGISTERED **PROFESSIONAL** LAND SURVEYOR

PRELIMINARY


OREGON JUNE 30, 1997 GREG E. FLOWERS 02820LS

RENEWS 12/31/2021

400 Bradley Blvd, Ste 106 Richland, WA 99352 509.942.1600

pbsusa.com

CLIENT: FASTRACK, INC	C.	PROJECT NO.: 66127.000	
URVEYOR: GREG E. FLOWERS		DATE: 08/26/2020	
ALC BY: ADM / ROP	DRAWN BY: ROP / DWW		SCALE: 1" = 60'
ECTION: 20	TOWNSHIP: 5 NORTH		RANGE: 28 EAST
CITY: UMATILLA	COUNTY: UMATILLA		SHEET <u>3</u> OF <u>6</u>

BALLARD SUBDIVISION PHASE 1 TENTATIVE PLAN LOT LAYOUT

LOCATED IN A PORTION OF THE SOUTHEAST 1/4 OF THE NORTHWEST 1/4, THE SOUTHWEST 1/4 OF THE NORTHEAST 1/4, THE NORTHWEST 1/4 OF THE SOUTHEAST 1/4 & THE NORTHEAST 1/4 OF THE SOUTHWEST 1/4 OF SECTION 20, TOWNSHIP 5 NORTH, RANGE 28 EAST OF THE WILLAMETTE MERIDIAN, CITY AND COUNTY OF UMATILLA, OREGON.

C1	18.84	12.00'	89°58'33"	N44°09'15"E	16.97	(R4)
C2	18.94	12.00'	90°25'33"	S45°38'42"E	17.03	(R4)
C3	18.86'	12.00'	90°01'53"	N44°35'01"E	16.98'	(R4)
C4	18.85'	12.00'	89°58'46"	S45°25'19"E	16.97	(R4)
C5	25.75'	270.00'	5°27'52"	S86°50'23"E	25.74	(R4)
C6	51.07'	230.00'	12°43'20"	N68°32'09"W	50.97	(R4)
C7	181.39'	170.00'	61°08'04"	S31°36'27"E	172.91'	(R4)
C8	18.85'	12.00'	90°00'00"	N43°57'35"E	16.97'	(R1,R2&R4)
C9	117.84	200.00'	33°45'35"	N45°17'42"W	116.15	(R4)
C10	1.57	200.00'	0°27'03"	N89°22'03"E	1.57	(R4)
C11	29.79'	300.00'	5°41'23"	S87°35'14"E	29.78'	(R4)
C12	3.32'	300.00'	0°38'05"	N84°25'30"W	3.32'	
C13	26.49'	240.00'	6°19'28"	N87°16'11"W	26.48'	
C14	110.95	100.00'	63°33'58"	N31°21'04"E	105.35	
C15	138.45'	250.01	31°43'41"	N78°59'53"E	136.68'	
C16	151.23'	300.01	28°52'54"	S70°41'50"E	149.63'	
C17	97.13'	150.01'	37°05'57"	S18°07'03"W	95.44'	
C18	80.16'	200.00	22°57'47"	S73°39'23"E	79.62'	
C19	67.97'	200.00'	19°28'20"	S71°54'39"E	67.64'	
C20	12.19'	200.00'	3°29'27"	N83°23'33"W	12.18'	
C21	302.44'	600.00'	28°52'51"	N70°41'51"W	299.25'	
C22	150.45	600.00'	14°22'01"	S77°57'16"E	150.06	
C23	151.99'	600.00'	14°30'50"	N63°30'51"W	151.58'	
C24	236.17'		8°27'24"	N52°01'43"W	235.95'	
C25	81.66'		2°55'27"	S54°47'42"E	81.65'	
C26_	154.51	1600.07	5°31'57"	N50°34'00"W	154.45'	
C27	38.21'	20.00'	109°28'20"	N63°05'21"E	32.66'	
C28	32.64'	20.00'	93°29'27"	S38°23'33"E	29.13'	
C29	95.65'	630.00'	8°41'55"	N80°47'19"W	95.55	
C30	34.64'	20.00'	99°13'52"	N53°56'42"E	30.47	
C31	25.02'	20.00'	71°41'00"	S31°30'43"E	23.42'	
C32	32.66'	630.00'	2°58'14"	S65°52'07"E	32.66'	
C33	31.57	20.00'	90°25′27"	S45°38'39"E	28.39'	
C34	31.42'	20.00'	90°00'00"	S44°34'05"W	28.29'	
C35	31.42'	20.00'	90°00'00"	S45°25'55"E	28.29'	
C36	31.42'	20.00'	90°00'00"	N44°34'05"E	28.29'	
C37	31.42'	20.00'	90°00'00"	S45°25'55"E	28.29'	
C38	31.42'	20.00'	90°00'00"	S44°34'05"W	28.29'	
C39	31.42'	20.00'	90°00'00"	N45°25'55"W	28.29'	
C40	31.42'	20.00'	90°00'00"	S44°34'05"W	28.29'	
C41	31.42'	20.00'	90°00'00"	S45°25'55"E	28.29'	
C42	31.27'	20.00'	89°34'33"	S44°21'21"W	28.18'	
C43	29.80'	270.00'	6°19'28"	S87°16'11"E	29.79'	
C44	31.42'	20.00'	90°00'00" 1°09'12"	S45°25'55"E S84°41'03"E	28.29'	
C45 C46	6.64'	330.00° 210.00°	619'28"	N87°16'11"W	6.64' 23.17'	
C46 C47	23.18' 30.20'	20.00	86°30'10"	S46°19'00"W	27.41'	
	41.46	130.00	18°16'13"	S12°12'01"W	41.28	
C48 C49	77.66	70.00	63°33'58"	S31°21'04"W	73.74	
C50	53.02'	130.00	23°21'59"	S33°01'07"W	52.65'	
C51	41.82	130.00	18°25'55"	N53°55'05"E	41.64	
C52	13.60'	280.01	2°47'01"	N64°31'33"E	13.60'	
C53	75.18'	280.01	15°23'03"	S73°36'35"W	74.96	
C54	67.34	220.01	17°32'13"	N71°54'09"E	67.08'	
C55	54.49	220.01	14°11'28"	S87°45'59"W	54.35	
C56	61.40'	280.01	12°33'49"	S87°35'01"W	61.28	
C57	4.87	280.01	0°59'48"	N85°38'11"W	4.87	
C58	29.57	20.00'	84°42'21"	N42°47'06"W	26.95'	
C59	33.27	20.00	95°17'39"	N47°12'54"E	29.56	
C60	29.57	20.00	84°42'21"	N42°47'06"W	26.95	
C61	34.73'	20.00	99°30'08"	S49°19'09"W	30.53	1
C62	49.41'	270.01	10°29'08"	N75°41'13"W	49.35	1
C63	24.91'	330.01	4°19'30"	S82°58'31"E	24.91	
C64	60.99'	330.01	10°35'19"	N75°31'07"W	60.90'	1
C65	60.83'	330.01	10°33'40"	N64°56'37"W	60.74	1
C66	66.86'	270.01	14°11'16"	N63°21'01"W	66.69'	
C67	28.57	20.00'	81°49'48"	N15°20'28"W	26.20'	
C68	19.62'	330.01	3°24'25"	S57°57'35"E	19.62'	
C69	30.40'	20.00'	87°04'36"	N80°12'19"E	27.55	
C70	73.31'	180.01	23°20'03"	N13°54'24"E	72.80'	
C71	8.39	180.01	2°40'18"	S00°54'14"W	8.39	
	77.00'	100.01	17.70,10	CO0°07'50"W	7C 0E'	

120.01' | 17°39'48" | S08°23'59"W | 36.85'

CURVE TABLE

CURVE ARC LENGTH RADIUS DELTA ANGLE CHORD BEARING CHORD LENGTH (RECORD ARC L)

		С	URVE TA	BLE	
CURVE	ARC LENGTH		DELTA ANGLE	CHORD BEARING	
C73	37.18'	20.00'	106°30'45"	N70°29'15"E	32.05'
C74	32.44'	20.00'	92°55'24"	S09°47'41"E	29.00'
C75	7.04'	442.52	0°54'40"	S56°42'42"E	7.04'
C76	58.73'	442.52	7°36'14"	N60°58'09"W	58.68'
C77	26.31'	442.52'	3°24'25"	N57°57'35"W	26.31'
C78	81.57'	442.52	10°33'40"	N64°56'37"W	81.45'
C79	58.46'	442.52	7°34'10"	N68°33'21"W	58.42'
C80	58.82'	442.52	7°36'55"	S76°08'53"E	58.77'
C81	81.78'	442.52	10°35'19"	S75°31'07"E	81.66'
C82	40.02'	442.52	5°10'56"	S82°32'49"E	40.01'
C83	33.40'	442.52	4°19'30"	S82°58'31"E	33.40'
C84	41.11'	230.00'	10°14'27"	S80°01'03"E	41.05'
C85	51.55'	570.00'	5°10'54"	N82°32'50"W	51.53'
C86	75.76'	570.00'	7°36'57"	N76°08'54"W	75.71'
C87	75.31'	570.00'	7°34'11"	N68°33'20"W	75.25'
C88	75.65'	570.00'	7°36'16"	N60°58'07"W	75.60'
C89	9.05'	570.00'	0°54'34"	N56°42'43"W	9.05'
C90	91.12'	630.47	8°16'50"	N60°14'30"W	91.04'
C91	32.06'	20.00'	91°50'55"	N09°15'26"W	28.74'
C92	32.06'	20.00'	91°50'55"	N82°35'29"E	28.74'
C93	81.04'	1630.07	2°50'54"	N54°45'12"W	81.03'
C94	81.24'	1630.07	2°51'20"	S51°54'05"E	81.24'
C95	76.05'	1630.07	2°40'23"	N49°08'13"W	76.04'
C96	69.47'	1570.07	2°32'06"	N50°13'01"W	69.46'
C97	29.47'	1570.07	1°04'32"	S55°43'10"E	29.47'
C98	2.26'	1630.07	0°04'47"	N56°13'02"W	2.26'
C99	31.49'	1570.07	1°08'56"	S48°22'30"E	31.49'

C78	81.57'	442.52	10°33'40"	N64°56'37"W	81.45'
C79	58.46'	442.52	7°34'10"	N68°33'21"W	58.42'
C80	58.82'	442.52'	7°36'55"	S76°08'53"E	58.77'
C81	81.78'	442.52	10°35'19"	S75°31'07"E	81.66'
C82	40.02'	442.52	5°10'56"	S82°32'49"E	40.01'
C83	33.40'	442.52	4°19'30"	S82°58'31"E	33.40'
C84	41.11'	230.00'	10°14'27"	S80°01'03"E	41.05'
C85	51.55'	570.00'	5°10'54"	N82°32'50"W	51.53'
C86	75.76'	570.00'	7°36'57"	N76°08'54"W	75.71'
C87	75.31'	570.00'	7°34'11"	N68°33'20"W	75.25'
C88	75.65'	570.00'	7°36'16"	N60°58'07"W	75.60'
C89	9.05'	570.00'	0°54'34"	N56°42'43"W	9.05'
C90	91.12'	630.47	8°16'50"	N60°14'30"W	91.04'
C91	32.06'	20.00'	91°50'55"	N09°15'26"W	28.74'
C92	32.06'	20.00'	91°50'55"	N82°35'29"E	28.74'
C93	81.04'	1630.07	2°50'54"	N54°45'12"W	81.03'
C94	81.24'	1630.07	2°51'20"	S51°54'05"E	81.24'
C95	76.05			N49°08'13"W	76.04
C96	69.47'		2°32'06"	N50°13'01"W	69.46'
C97	29.47'	1570.07	1°04'32"	S55°43'10"E	29.47
C98	2.26'	1630.07	0°04'47"	N56°13'02"W	2.26'

LEGEND & AE	BREVIATIONS		
# • #	FOUND SURVEY MONUMENT / PROPERTY PIN, DENOTED WITH POINT NUMBER, SEE TABLE, SHEET 4		
•	FOUND 3" BRASS CAP WITH PUNCH IN CASE AND COVER STAMPED: "PBS LS 02820 2019" PER (R4)		
•	FOUND 5/8" IRON REBAR WITH YELLOW PLASTIC CAR STAMPED: "PBS OR 02820 LS" PER (R4)		
\circ	CALCULATED POINT ONLY, NOT FOUND OR SET		
(R#) / AFN	DENOTES RECORD DATA PER SURVEY REFERENCE, SEE LIST / AUDITOR FILE NUMBER		
BLM / N'LY	BUREAU OF LAND MANAGEMENT / NORTHERLY		
PP / PROP.	PARTITION PLAT / PROPERTY		
P.U.E.	PUBLIC UTILITY EASEMENT		
RW / TL	DENOTES PROPOSED RIGHT-OF-WAY / TAX LOT		
S.F. / AC. / (TYP.) / W/	SQUARE FEET / ACRES / TYPICAL / WITH		
	SITE BOUNDARY		
	EXISTING RIGHT-OF-WAY BOUNDARY (ADJACENT)		
	EXISTING RIGHT-OF-WAY CENTERLINE (ADJACENT)		
	EXISTING PROPERTY LINE		
	EXISTING EASEMENT		
××××	EXISTING FENCE LINE		
— — — — 545— — — —	1-FOOT INTERVAL EXISTING GROUND CONTOURS		
	PROPOSED RIGHT-OF-WAY		
	PROPOSED RIGHT-OF-WAY CENTERLINE		
	PROPOSED LOT LINE		
	PROPOSED EASEMENT, SEE P.U.E. NOTE, SHEET 5		

	LINE TABLE					
INE	BEARING	DISTANCE	(RECORD BEARING)	(RECORD DIST.)		
.1	N89°08'32"E	87.67'	(R4)	(R4)		
.2	N88°58'36"E	60.00'	(R4)	(R4)		
.3	N00°26'33"W	60.00'	(R4)	(R4)		
	N00°25'55"W	80.46'	(R4)	(R4)		
	N89°34'05"E	92.70'	(R4)	(R4)		
.6	N05°42'30"W	91.24'	(R4)	(R4)		
.7	N27°49'31"E	60.00'	(R4)	(R4)		
.8	N01°02'25"W	138.99'	(R4)	(R4)		
.9	N01°02'25"W	60.00'	(R4)(S00°11'26"E R1&R2)	(R1,R2&R4)		
.10	N88°57'35"E	68.00'	(R4)(S89°48'34"W R1&R2)	(R1,R2&R4)		

BASIS OF BEARINGS

BEARING OF N88°58'24"E, ALONG THE NORTH LINE OF THE NW 1/4 OF SECTION 20, TOWNSHIP 5 NORTH, RANGE 28 EAST OF THE WILLAMETTE MERIDIAN, BETWEEN TIED MONUMENTS. OREGON NORTH ZONE STATE PLANE DERIVED FROM OPUS SOLUTIONS FROM STATIC GPS DATA COLLECTED ON CONTROL POINTS. DISTANCES SHOWN ARE TRUE GROUND DISTANCES, USING A COMBINED GRID TO GROUND SCALE FACTOR OF 1.00004281770771

FOUND MONUMENT & PROPERTY PIN TABLE (POSITION FROM CALCULATED TO MEASURED)

#	DESCRIPTION / SURVEY REFERENCE	BEARING	DISTANCE	
100	3" BRASS CAP BY BLM, ESTABLISHED PER (R6)	HE	LD	
102	REBAR W/ CAP: "OR LS 2316" (R2)	HE	LD	
108	3" BRASS CAP BY BLM, ESTABLISHED PER (R6)	HE	LD	
1002	2" ALUMINUM CAP ON 1" PIPE LS 951, ESTABLISHED PER (R8), CAP MATERIAL DOES NOT MATCH AS DESCRIBED ON (R8)	HE	LD	
1003	2-1/2" BRASS CAP BY RPE 7728, ESTABLISHED PER (R5)	HE	LD	
1004	2-1/2" BRASS CAP ON 1" PIPE LS 951, ESTABLISHED PER (R8)	HE	LD	
1005	2-1/2" BRASS CAP ON 1" PIPE LS 951, ESTABLISHED PER (R8)	HE		
1006	3" BRASS CAP BY BLM, ESTABLISHED PER (R6)	HE	LD	
1007	REBAR W/ CAP: "OR LS 2316" (R1)	HE	LD	
1008	REBAR W/ CAP: "RSI JAB 02735 LS" (R3)	HE	LD	
1009	REBAR W/ CAP: "RSI JAB 02735 LS" (R3)	HE	LD	
1010	REBAR W/ CAP: "RSI JAB 02735 LS" (R3)	HE	LD	
1019	REBAR W/ CAP: "OR LS 2316" ESTABLISHED PER (R3) & (R11)	HE	LD	
1020	REBAR W/ CAP: "OR LS 2316" (R11)	HE		
1021	REBAR W/ CAP: "OR LS 2316" (R13)	0.14' N'LY OF		
1022	REBAR W/OUT CAP (R13)	0.24' N'LY OF		
1023	REBAR W/OUT CAP (R11)	N22°E	0.29'	
1025	REBAR W/ CAP: "LS 2316" (R13)	0.11' N'LY OF		
1026	REBAR W/OUT CAP (R11)	S61°W	0.16'	
1027	REBAR W/ CAP: "OR LS 2316" NO RECORD	S3°W	0.25'	
1028	REBAR W/ CAP: "PLS 2627" (R10)	HE		
1029	REBAR W/ CAP: "RV MCKINNIS PLS 2431" (R9)		0.70'	
1030	REBAR W/ CAP: "RV MCKINNIS PLS 2431" (R9)			
1031	FOUND REBAR W/OUT CAP (R7)	N14°W	0.11'	
	FOUND REBAR W/OUT CAP (R7)	HE		
	REBAR W/ CAP: "RSI JAB 02735 LS" (R3)			
			AD CENTERLINE	
NOTE: "HELD" DENOTES PIN WAS FOUND WITHIN 0.10' OF CALCULATED				

SURVEY REFERENCES

(R1) HAYDEN RIVER ESTATES NO. 3 (BK. 14 OF PLATS, PG. 13) BY CUMMINGS

(R2) HAYDEN RIVER ESTATES NO. 2A (BK. 13 OF PLATS, PG. 130) BY CUMMINGS

(R3) BOUNDARY LINE ADJUSTMENT (SURVEY NO. 97-124-B) BY BAALMAN (R4) HAYDEN RIVER ESTATES PHASE 4 (BK. 16 OF PLATS, PG. 97) BY FLOWERS

(R5) SURVEY FOR COUNTY ROAD DEPARTMENT (SURVEY NO. 1-016-C) BY KRUMBEIN

(R6) BUREAU OF LAND MANAGEMENT PLAT (SURVEY NO. Q-772-B) BY TUERS (R7) SURVEY FOR RAINBOW REALTY (SURVEY NO. 86-11-A) BY EDWARDS

(R8) SURVEY FOR UMATILLA COUNTY AREA #1 (SURVEY NO. 91-01-B) BY EWARDS

(R9) SCOTT PARTITION PLAT (PARTITION PLAT NO. 1996-47) BY MCKINNIS (R10) BOUNDARY SURVEY FOR REFFETT (SURVEY NO. 98-234-C) BY ROBERTS

(R11) BOUNDARY LINE ADJUSTMENT (SURVEY NO. 01-38-B) BY CUMMINGS (R12) LAMBERT PARTITION PLAT (PARTITION PLAT 2000-37)

(R13) LAMBERT PARTITION PLAT (PARTITION PLAT 2003-04)

(R14) LAMBERT PARTITION PLAT (PARTITION PLAT 2006-26) (R15) LAMBERT PARTITION PLAT (PARTITION PLAT 2006-27)

(R16) SURVEY FOR UMATILLA COUNTY (SURVEY 98-101-C) BY WELLS

REGISTERED PROFESSIONAL LAND SURVEYOR

PRELIMINARY

OREGON JUNE 30, 1997 GREG E. FLOWERS 02820LS

RENEWS 12/31/2021

PBS Engineering and Environmental Inc. 400 Bradley Blvd, Ste 106 Richland, WA 99352 509.942.1600

pbsusa.com

CLIENT: FASTRACK, IN	C.	PR	OJECT NO.: 66127.000
SURVEYOR: GREG E. FL	OWERS	D	ATE: 08/26/2020
CALC BY: ADM / ROP	DRAWN BY: ROP / DWW		SCALE: 1" = 60'
SECTION: 20	TOWNSHIP: 5 NORTH		RANGE: 28 EAST
CITY: UMATILLA	COUNTY: UMA	TILLA	SHEET 4 OF 6

NARRATIVE

THIS SURVEY WAS PERFORMED AT THE REQUEST OF FASTRACK INC. TO DELINEATE AND SUBDIVIDE THE BOUNDARIES OF LOT 67 OF HAYDEN RIVER ESTATES PHASE 4, RECORDED IN BOOK 16, PAGE 97 AND OF TAX LOTS 1300 & 1700 OF TAX MAP 5N2820 ALL RECORDS OF UMATILLA COUNTY, OREGON. PORTIONS OF THIS BOUNDARY HAD BEEN PREVIOUSLY DEFINED AND MONUMENTED BY SAID HAYDEN RIVER ESTATES PHASE 4 AND PARTITION PLAT NO. 2000—37.

DURING OUR INITIAL FIELD WORK, WE RECOVERED AND TIED MANY OF THE PERIMETER LOT CORNERS AND CONTROLLING SECTION CORNERS. THE NORTHEAST CORNER OF THE SECTION WAS NOT RECOVERED DURING OUR FIELD WORK, WE HAVE RELIED ON A COMPUTED POSITION USING A BEARING—BEARING INTERSECTION USING DATA FROM SURVEY 98—101—C. THIS PROPERTY IS BORDERED BY TAX LOT 1200, DESCRIBED AS BEING THE NORTH 447.42 FEET OF THE WEST 208.71 FEET OF THE SOUTHWEST QUARTER OF THE NORTHEAST QUARTER OF SECTION 20. OUR BREAKDOWN OF THE NORTHEAST QUARTER OF SECTION 20 DID NOT FIT THE MONUMENTED POSITION OF OF TAX LOT 1200, WE MADE THE DECISION TO HOLD THE PINS FOUND ALONG THE SOUTHERLY LINE OF TAX LOT 1200 FOR THE TRUE LOCATION OF THIS PARCEL. THIS ALSO AGREES WITH THE RECORD DIMENSIONS SHOWN ON HAYDEN RIVER ESTATES NO. 3.

THIS SURVEY WAS PERFORMED AS A REAL TIME KINEMATIC SURVEY USING TRIMBLE DUAL FREQUENCY GPS RECEIVERS WITH A PRECISION OF ONE CENTIMETER +/- 2 PPM TIMES MEASURED LENGTH. MONUMENTS WERE VISITED IN AUGUST AND SEPTEMBER 2018

TITLE REPORT REFERENCE

ALL TITLE INFORMATION SHOWN ON THIS MAP HAS BEEN EXTRACTED FROM INFORMATION CONTAINED IN AMERITITLE, LOCATED IN PENDLETON, OREGON, TITLE REPORTS, FILE NUMBERS 240898AM & 277356AM, DATED MAY 30, 2018 & JANUARY 22, 2019, RESPECTIVELY. IN PREPARING THIS TENTATIVE PLAN, PBS ENGINEERING & ENVIRONMENTAL INC. HAS CONDUCTED NO INDEPENDENT TITLE SEARCH, NOR IS PBS ENGINEERING & ENVIRONMENTAL INC. AWARE OF ANY TITLE ISSUES AFFECTING THE PROPERTY OTHER THAN THOSE SHOWN ON THE TENTATIVE PLAN AND DISCLOSED BY THE REFERENCED AMERITITLE TITLE REPORTS. PBS ENGINEERING & ENVIRONMENTAL INC. HAS RELIED WHOLLY ON AMERITITLE'S REPRESENTATION OF THE TITLE'S CONDITION TO PREPARE THIS MAP AND THEREFORE PBS ENGINEERING & ENVIRONMENTAL INC. QUALIFIES THE MAP'S ACCURACY AND COMPLETENESS TO THAT EXTENT.

LEGAL DESCRIPTIONS

LOT 67:

LOT 67, HAYDEN RIVER ESTATES PHASE 4, A REPLAT OF LOT 41 IN HAYDEN RIVER ESTATE NO. 3, LYING WITHIN A PORTION OF SECTION 20, TOWNSHIP 5 NORTH, RANGE 28 EAST OF THE WILLAMETTE MERIDIAN, CITY OF UMATILLA, UMATILLA COUNTY, OREGON.

TRACT I (5N2820 LOT 1700):

A TRACT OF LAND LOCATED IN PARCEL 3, PARTITION PLAT NO. 2000—37 AND IN THE WEST HALF OF THE SOUTHEAST QUARTER OF SECTION 20, BEING DESCRIBED AS FOLLOWS:

A TRACT OF LAND LOCATED IN SECTION 20, TOWNSHIP 5 NORTH, RANGE 28, EAST OF THE WILLAMETTE MERIDIAN, UMATILLA COUNTY, OREGON AND BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BEGINNING AT THE CENTER QUARTER CORNER OF SAID SECTION 20; THENCE ALONG THE NORTH—SOUTH CENTERLINE OF SAID SECTION 20, SOUTH 00°06'26" EAST, A DISTANCE OF 657.67 FEET; THENCE NORTH 89°48'44" EAST A DISTANCE OF 1324.40 FEET, TO A POINT ON THE EAST LINE OF THE SOUTH HALF OF THE NORTHWEST QUARTER OF THE SOUTHEAST QUARTER OF SAID SECTION 20; THENCE ALONG SAID LINE, SOUTH 00°13'13" EAST, A DISTANCE OF 212.67 FEET; THENCE SOUTH 89°48'36" WEST, A DISTANCE OF 2619.53 FEET, TO A POINT ON THE EASTERLY RIGHT—OF—WAY OF POWERLINE ROAD; THENCE ALONG SAID RIGHT—OF WAY, NORTH 00°00'38" EAST, A DISTANCE OF 750.41 FEET, TO A POINT ON THE SOUTHERLY BOUNDARY OF LOT 41, HAYDEN RIVER ESTATES PHASE 3, AS PER THE PLAT THEREOF IN BOOK 14, PAGE 13, PLAT RECORDS, UMATILLA COUNTY, OREGON; THENCE ALONG SAID SOUTHERLY LINE, THE FOLLOWING 10 CALLS: (1) SOUTH 89°59'08" EAST, A DISTANCE OF 111.09 FEET; (2) NORTH 87°46'49" EAST, A DISTANCE OF 60.05 FEET; (3) SOUTH 89°59'08" EAST, A DISTANCE OF 100.00 FEET; (4) NORTH 00°00'52" EAST, A DISTANCE OF 69.11 FEET; (5) NORTH 43°07'46" EAST, A DISTANCE OF 61.78 FEET; (6) NORTH 34°37'08" EAST, A DISTANCE OF 100.38 FEET; (7) SOUTH 55°24'49" EAST, A DISTANCE OF 686.04 FEET; (8) NORTH 34°35'11" EAST, A DISTANCE OF 100.00 FEET; (9) NORTH 56°6'02" EAST, A DISTANCE OF 686.04 FEET; (8) NORTH 34°35'11" EAST, A DISTANCE OF 414.69 FEET TO A POINT ON THE NORTH—SOUTH CENTERLINE OF SAID SECTION 20; THENCE ALONG SAID LINE, SOUTH 00°06'26" EAST, A DISTANCE OF 136.93 FEET TO THE POINT OF BEGINNING.

TRACT II (5N2820 LOT 1300):

THE WEST HALF OF THE SOUTHWEST QUARTER OF THE NORTHEAST QUARTER OF SECTION 20, TOWNSHIP 5 NORTH, RANGE 28, EAST, WILLAMETTE MERIDIAN, COUNTY OF UMATILLA, STATE OF OREGON;

EXCEPTING THEREFROM THE NORTH 447.42 FEET OF THE WEST 208.71 FEET THEREOF;
ALSO EXCEPTING THEREFROM THAT PORTION DESCRIBED IN DEED RECORDED OCTOBER 30, 1997 IN MICROFILM R-318, PAGE 597, OFFICE OF COUNTY RECORDS, UMATILLA COUNTY, OREGON.

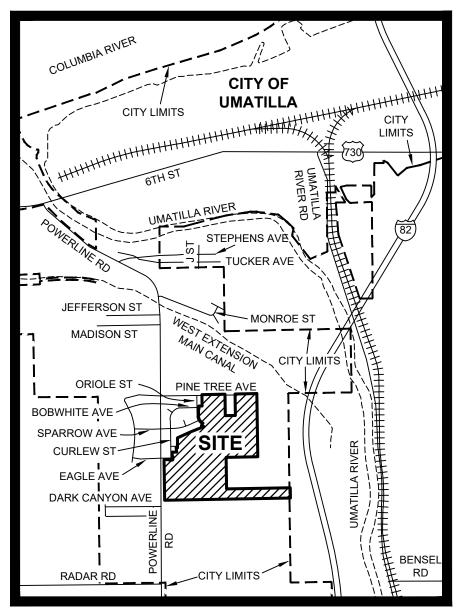
OWNER/DEVELOPER

FASTRACK, INC. 4803 CATALONIA DRIVE PASCO, WA 99301

FLOOD PLAIN NOTE

FLOOD ZONE FOR THIS AREA IS LISTED AS ZONE X PER UMATILLA COUNTY, OREGON FIRM MAP NUMBER 41059C0265G, IN WHICH ZONE X IS DEFINED AS: AREAS DETERMINED TO BE OUTSIDE THE 0.2% ANNUAL CHANCE FLOODPLAIN.

ZONING


ZONING ON ADJACENT PROPERTIES IS AS FOLLOWS: SINGLE FAMILY RESIDENTIAL (R1) TO THE NORTH, EAST, SOUTH & WEST.

EXISTING USE OF PROPERTY

LAND IS CURRENTLY UNIMPROVED. THERE IS A GRAVEL ACCESS ROAD AND GAS MAIN RUNNING ACROSS THE NORTH END OF THE SITE IN THE ACCESS AND UTILITY EASEMENT (AFN 138679). ACCESS TO PUBLIC UTILITIES IS AVAILABLE TO THE NORTH AND WEST FROM ADJACENT DEVELOPMENTS AND IMPROVEMENTS.

PUBLIC UTILITY EASEMENT NOTE

UTILITIES SHALL HAVE THE RIGHT TO INSTALL, MAINTAIN AND OPERATE THEIR EQUIPMENT AND ALL OTHER RELATED FACILITIES ABOVE AND BELOW GROUND WITHIN THE PUBLIC UTILITY EASEMENTS IDENTIFIED ON THIS PLAT MAP AS MAY BE NECESSARY OR DESIRABLE IN PROVIDING UTILITY SERVICES WITHIN AND WITHOUT THE LOTS IDENTIFIED HEREIN, INCLUDING THE RIGHT OF ACCESS TO SUCH FACILITIES AND THE RIGHT TO REQUIRE REMOVAL OF ANY OBSTRUCTIONS INCLUDING STRUCTURES, TREES AND VEGETATION THAT MAY BE PLACED WITHIN THE PUE. THE UTILITY MAY REQUIRE THE LOT OWNER TO REMOVE ALL OBSTRUCTIONS AT THE OWNER'S EXPENSE, OR THE UTILITY MAY REMOVE SUCH OBSTRUCTIONS AT THE LOT OWNER'S EXPENSE. AT NO TIME MAY ANY PERMANENT STRUCTURES BE PLACED WITHIN THE PUE OR ANY OTHER OBSTRUCTION WHICH INTERFERES WITH THE USE OF THE PUE WITHOUT THE PRIOR WRITTEN APPROVAL OF THE UTILITIES WITH FACILITIES IN THE PUE.

VICINITY MAP

BALLARD SUBDIVISION PHASE 1 TENTATIVE PLAN LOT LAYOUT

LOCATED IN A PORTION OF THE SOUTHEAST 1/4 OF THE NORTHWEST 1/4, THE SOUTHWEST 1/4 OF THE NORTHEAST 1/4, THE NORTHWEST 1/4 OF THE SOUTHEAST 1/4 & THE NORTHEAST 1/4 OF THE SOUTHWEST 1/4 OF SECTION 20, TOWNSHIP 5 NORTH, RANGE 28 EAST OF THE WILLAMETTE MERIDIAN, CITY AND COUNTY OF UMATILLA, OREGON.

REGISTERED PROFESSIONAL LAND SURVEYOR

PRELIMINARY

JUNE 30, 1997 GREG E. FLOWERS 02820LS

RENEWS 12/31/2021

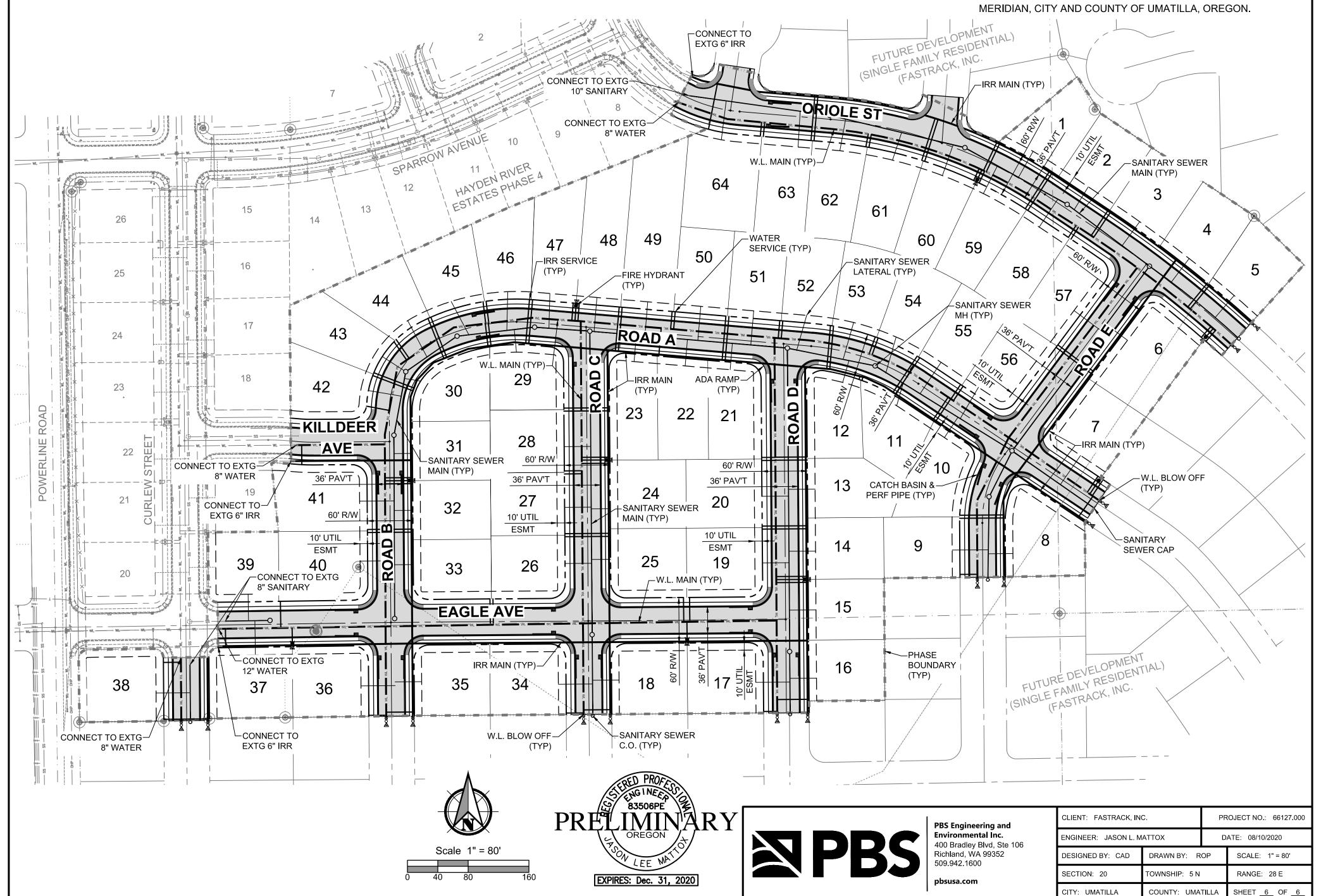
PBS Engineering and Environmental Inc. 400 Bradley Blvd, Ste 106 Richland, WA 99352 509.942.1600

pbsusa.com

CLIENT: FASTRACK, IN	C.	PR	OJECT NO.: 66127.000
SURVEYOR: GREG E. FL	OWERS	D.	ATE: 08/26/2020
CALC BY: ADM / ROP	DRAWN BY: ROP / DWW		SCALE: N/A
SECTION: 20	TOWNSHIP: 5 NORTH		RANGE: 28 EAST
CITY: UMATILLA	COUNTY: UMA	TILLA	SHEET <u>5</u> OF <u>6</u>

PUBLIC UTILITY EASEMENT NOTE

UTILITIES SHALL HAVE THE RIGHT TO INSTALL, MAINTAIN AND OPERATE THEIR EQUIPMENT AND ALL OTHER RELATED FACILITIES ABOVE AND BELOW GROUND WITHIN THE PUBLIC UTILITY EASEMENTS IDENTIFIED ON THIS PLAT MAP AS MAY BE NECESSARY OR DESIRABLE IN PROVIDING UTILITY SERVICES WITHIN AND WITHOUT THE LOTS IDENTIFIED HEREIN, INCLUDING THE RIGHT OF ACCESS TO SUCH FACILITIES AND THE RIGHT TO REQUIRE REMOVAL OF ANY OBSTRUCTIONS INCLUDING STRUCTURES, TREES AND VEGETATION THAT MAY BE PLACED WITHIN THE PUE. THE UTILITY MAY REQUIRE THE LOT OWNER TO REMOVE ALL OBSTRUCTIONS AT THE OWNER'S EXPENSE, OR THE UTILITY MAY REMOVE SUCH OBSTRUCTIONS AT THE LOT OWNER'S EXPENSE. AT NO TIME MAY ANY PERMANENT STRUCTURES BE PLACED WITHIN THE PUE OR ANY OTHER OBSTRUCTION WHICH INTERFERES WITH THE USE OF THE PUE WITHOUT THE PRIOR WRITTEN APPROVAL OF THE UTILITIES WITH FACILITIES IN THE PUE.


NOTES FOR UTILITY SERVICE PROVIDERS:

MUNICIPAL WATER.....CITY OF UMATILLA MUNICIPAL SEWER.....CITY OF UMATILLA

MUNICIPAL IRRIGATION.......CITY OF UMATILLA (DRY SYSTEM)
POWER PROVIDER......PACIFIC POWER
STORM WATER......ON-SITE RETENTION. SYSTEMS IN RIGHT-OF-WAY

BALLARD SUBDIVISION PHASE 1 TENTATIVE PLAN UTILITY LAYOUT

LOCATED IN A PORTION OF THE SOUTHEAST 1/4 OF THE NORTHWEST 1/4, THE SOUTHWEST 1/4 OF THE NORTHEAST 1/4, THE NORTHWEST 1/4 OF THE SOUTHEAST 1/4 & THE NORTHEAST 1/4 OF THE SOUTHWEST 1/4 OF SECTION 20, TOWNSHIP 5 NORTH, RANGE 28 EAST OF THE WILLAMETTE

MEMORANDUM

DATE: September 11, 2020

TO: Dave Stockdale, Umatilla City Manager

Scott Coleman, Umatilla Public Works Director

Brandon Seitz, Planning Director

Melissa Stockdale, Finance Director

FROM: J-U-B Engineers - Shae Talley P.E.

Spencer Montgomery

SUBJECT: Umatilla Residential Development TIA Comments

PROJECT: Ballard Subdivision

PROJECT NO.: 33-19-019

The intent of this memo is to provide comments on the Traffic Impact Analysis (TIA) submitted by PBS for the Umatilla Residential Development. J-U-B Engineers, Inc., reviewed the TIA dated April 20, 2020 and has the following comments:

- 1. J-U-B ENGINEERS read the above referenced Traffic Impact Analysis and has reviewed the following aspects of the report: background traffic growth, in-process trips, trip generation, trip distribution, pass-by trips, forecast traffic volumes with the development, forecast delay and Level of Service, capacity worksheets and turn-lane analysis.
- 2. We believe that the above mentioned components of the analysis are accurate and consistent with industry standards.
- 3. We concur with several recommendations included in Section 7 on page 23, specifically:
 - Reduce the speed limit on Powerline Road to 35 MPH along the development frontage.
 - Assure all driveways, sidewalks, and curb ramps constructed with the project comply with the current ADA guidelines.
 - Design proposed Powerline Road intersections consistent with Chapter 9.5.3 of the AASHTO Geometric Design Guide for intersection sight distance.
 - The intersection of US 730/Powerline Road is forecast to provide Level of Service "F" with the proposed developments in 2030. Several mitigation scenarios were presented, including adding an exclusive eastbound left turn lane and an exclusive northbound left turn lane, however this

33

will not achieve acceptable LOS standards. Installation of a traffic signal or roundabout will achieve LOS standards. The recommendation provided in the study is to "evaluate the US 730/Powerline Road intersection with further consultation between the City staff and ODOT to determine the ultimate intersection control and configuration. The study also indicates that the applicant should contribute an amount based on the increase in traffic from the 2030 condition without the project to 2030 with the project and the cost of an improvement that will meet ODOT operational standard" (which earlier in the report is stated to be 57%).

4. The study shows a need for left turn lanes at five locations at four intersections along Powerline Road (four southbound and one northbound). The recommendation is to "maintain the existing lane cross section on Powerline Road and <u>not</u> install left turn lanes. This recommendation is based on precedent established by prior developments' frontage improvements, the turn lanes' being unneeded for LOS, and the City's plan for future bike lanes along the roadway. The City should continue to monitor conditions, especially collision patterns, along the roadway for safety concerns and should pursue a corridor-wide improvement with a consistent lane cross section."

We believe that with multiple intersections on Powerline Road that suggest the need for a left turn lane for safety purposes that the City needs to determine the long-range vision for this facility. The TIA mentions that these developments will construct sidewalks along their frontage, and separately mentions that bike lanes are identified in the City of Umatilla Pedestrian and Bicycle Plan for Powerline Road. It appears that the corridor may be well served with a two-way left-turn lane (TWLTL), at least through the areas of the proposed development where there are several local street connections. There may not be enough existing right-of-way along Powerline Road to accommodate bike lanes, sidewalks and a TWLTL. However, if the proposed development constructs sidewalks it is unlikely that both bike lanes and a TWLTL will be included in the corridor. If both are desirable now is the time to make that decision so that the developers can make adjustments in the setback of the new lots and dedicate adequate right-of way for future improvements to the corridor.

www.jub.com J-U-B ENGINEERS, Inc.

Umatilla Residential Development Traffic Impact Analysis

Powerline Road City of Umatilla, Oregon

Prepared for: Fastrack, Inc. 4803 Catalonia Drive Umatilla, Oregon 99301 B5811PE PROFESSION B5811PE PROFE

Digitally signed by John Manix DN: C=US, E=john.manix@pbsusa.com, O=PBS Engineering and Environmental, OU=Traffic Engineering, CN=John Manix Date: 2020.04.13 16:50:56-07'00'

April 10, 2020 PBS Project 66127.000

Table of Contents

EX	(ECU	TIVE SUMMARY	1
	Pur	pose and Scope	i
	Find	dings	i
	Rec	ommendations	V
1	INTRODUCTION		
	1.1	Scope of Study	
	1.2	Existing Site Conditions	
	1.3	Existing Infrastructure	
		1.3.1 Land Uses	
		1.3.2 Existing Roadways	2
		1.3.3 Major Intersections and Traffic Control	
	1.4	Traffic Volumes	
		1.4.1 Existing Traffic Volumes	4
		1.4.2 Background Growth	
		1.4.3 In-Process Projects	
		1.4.4 Future Volumes	5
2	PRC	PPOSED CONDITIONS	6
	2.1	Project Description	(
	2.2	Access and Circulation	6
	2.3	Trip Generation and Distribution	7
		2.3.1 Proposed Trip Generation	7
		2.3.2 Proposed Trip Adjustments	
		2.3.3 Proposed Pass-By Trip Distribution and Assignment	
		2.3.4 Proposed Trip Distribution	
		2.3.5 Future Volumes with Project	<u>C</u>
3	INT	ERSECTION OPERATIONS AND ROADWAY CAPACITY ANALYSES	10
	3.1	Operations Description	10
	3.2	Operation Standards	10
	3.3	Analysis Methodology	10
	3.4	Level of Service Analyses	11
		3.4.1 2020 Existing Conditions	
		3.4.2 2030 Future Conditions Without Project	
		3.4.3 2030 Future Conditions With Project	
	3.5	Signal Warrant Evaluation	14
4	SAFETY ANALYSIS		15
	4.1	Left-Turn Lane Analysis	15
	4.2	Right-Turn Lane Analysis	16
	4.3	Collision Analysis	
	4.4	Transit, Pedestrian, and Bicycle Facilities	
	4.5	Intersection Sight Distance	17
5	INT	ERSECTION MITIGATION	10

6	STUDY FINDINGS	21
	6.1 Future Traffic Volumes Increase	2
	6.2 Access and Circulation	
	6.3 Trip Generation	
	6.4 Intersection Performance	21
	6.5 Signal Warrant Analysis	
	6.6 Left and Right Turn Analysis	21
	6.6 Left and Right Turn Analysis	22
	6.8 Transit, Pedestrian, and Bicycle Facilities	22
	6.9 Intersection Sight Distance	22
	6.10 Effective Project Mitigation	22
7	RECOMMENDATIONS	23
	7.1 Speed Limit	23
	7.1 Speed Limit	23
	7.3 Intersection Turn Lanes	
	7.4 Driveway Sight Lines	23
	7.5 Intersection Mitigation	23
В	REFERENCES	24

Supporting Data

TABLES

- Table 1. Land Uses Around the Site
- Table 2. Existing Roadway Information
- Table 3. Major Intersections: Existing Lanes and Traffic Controls
- Table 4. Umatilla Residential Development Uses
- Table 5. Trip Generation Estimates for Umatilla Residential Development
- Table 6. Estimated 2020 Level of Service for Existing Conditions for Study Area Intersections
- Table 7. Estimated 2030 Level of Service without Project for Study Area Intersections
- Table 8. Estimated 2030 Level of Service With Project for Study Area Intersections
- Table 9. Collision Analysis for Study Area Intersections (December 2013 through December 2018)
- Table 10. Mitigated 2030 With Project Level of Service at Powerline Road / Highway 730 Intersection

FIGURES

- Figure 1. Vicinity Map
- Figure 2. Site Plan
- Figure 3. Existing Lane Configurations and Traffic Controls
- Figure 4. Existing 2020 Volumes
- Figure 5. 2030 Without Project Volumes
- Figure 6. Access and Circulation
- Figure 7. 2030 Primary Trip Distribution and Assignment
- Figure 8. 2030 With Project Volumes

APPENDICES

- **Appendix A:** Traffic Counts
- **Appendix B:** In-Process Projects
- **Appendix C:** Trip Generation Calculations
- Appendix D: Level of Service Calculations
- Appendix E: Preliminary Traffic Signal Warrant
- Appendix F: Left- and Right-Turn Analysis
- Appendix G: Collision Rate Calculations and Data
- Appendix H: Mitigated Level of Service Calculations

©2020 PBS Engineering and Environmental Inc.

EXECUTIVE SUMMARY

Purpose and Scope

The applicants propose to develop 149± acres of vacant land into multiple uses that include single-family detached housing units and general commercial buildings. The site consists of three separate developments:

- Vandelay Meadows
 - o Consists of 4.52 acres of commercial general and 49 lots of single-family detached housing
 - o Located south of Eagle Avenue, north of Dark Canyon Road, and west of Powerline Road
- Cheryl's Place
 - o Consists of 104 lots single-family detached housing
 - o Located south of Dark Canyon Road and west of Powerline Road
- Ballard Property
 - o Consists of 389 lots of single-family detached housing
 - Located south of Pine Tree Avenue and east of Powerline Road

The proposed developments are anticipated to be completely built and occupied by 2030. The developers are collaborating to compile this single traffic impact analysis report (TIA) for the benefit of all three developments, collectively referred to as the Umatilla Residential Development.

This TIA analyzes the traffic impacts generated by the completed developments as required by the City of Umatilla (City). The traffic count data constituting the basis of the analyses were collected on Wednesday, March 4, 2020, prior to the implementation of significant statewide restrictions on school hours and nonessential travel, so this study provides a snapshot of typical traffic conditions not possible now due to the ongoing effects of the novel coronavirus/COVID-19 pandemic.

The following intersections were identified for study within this TIA:

- 1. Powerline Road / US Highway 730 (Highway 730)
- 2. Powerline Road / Pine Tree Avenue
- 3. Powerline Road / Sparrow Avenue
- 4. Powerline Road / Eagle Avenue
- 5. Powerline Road / Street at Vandelay Meadows
- 6. Powerline Road / Street at Ballard Property
- 7. Powerline Road / Riley Avenue (Street at Cheryl's Place)
- 8. Powerline Road / Interstate 82 Southbound Ramp
- 9. Powerline Road / Interstate 82 Northbound Ramp

Findings

Traffic volumes in the study area will continue to increase without or with the project. Generic background growth (at 2.0% for 10 years, compounded) was assumed to add approximately 22.0% to the existing traffic counts to estimate 2030 volumes. In addition, three in-process projects will generate traffic on study area roadways.

Vehicular and pedestrian connections will be provided between the Powerline Road public right-of-way and the proposed developments via six local access roads.

Including all land uses and assuming full build-out of the entire project, the Umatilla Residential Development is anticipated to generate 630 net new vehicle trips during the PM peak hour. In addition, the Umatilla Residential Development is anticipated to generate 48 pass-by trips during the PM peak hour.

Nine intersections were evaluated for operational performance based on level of service (LOS) and volume-to-capacity (v/c) ratio, which measure traffic operations.

All studied intersections currently operate at an acceptable LOS during the weekday PM peak hour.

All studied intersections operate at an acceptable LOS during 2030 Without Project conditions in the weekday PM peak hour except for Powerline Road / Highway 730 which operates at a "marginally acceptable" LOS E for the stop-controlled single northbound lane.

All studied intersections operate at an acceptable LOS during 2030 With Project conditions in the weekday PM peak hour except for Powerline Road / Highway 730 which operates at LOS F and with a v/c ratio of 2.391 for the stop-controlled single northbound lane.

No studied intersection meets Oregon Department of Transportation (ODOT) preliminary traffic signal warrants.

Five approaches meet the volume criterion for a left-turn lane:

- Southbound Powerline Road at Pine Tree Avenue
- Southbound Powerline Road at Sparrow Avenue
- Southbound Powerline Road at Eagle Avenue
- Northbound Powerline Road at Eagle Avenue
- Southbound Powerline Road at Street at Ballard Property

One approach meets the volume criterion for a right-turn lane:

Eastbound Highway 730 at Powerline Road

The 2013–2018 collision history at the study intersections was reviewed; all intersections have collision rates lower than the critical rate and no patterns of collision types or of severe collisions were identified.

Sidewalks, bike lanes, and off-street paths are available along several roadways within the study area. The development will construct new pedestrian and/or bicycle facilities along internal streets, connecting to current facilities where they exist and anticipating future connections.

For the proposed Umatilla Residential Development site accesses that do not currently exist, sight distance measurements are not presently possible.

The proposed Umatilla Residential Development site accesses that exist are assumed to have adequate sight distance measurements.

The project's impacts at the Powerline Road / Highway 730 intersection can be mitigated by upgrading the traffic control, either to a traffic signal with additional turn lanes or with a single-lane roundabout.

The project generates 57% of the total increase in trips from 2020 existing conditions to 2030 with project conditions.

Recommendations

Reduce the speed limit along Powerline Road to 35 miles per hour throughout the developments' frontages.

Assure all driveways, sidewalks, and curb ramps constructed with the project comply with the current Americans with Disabilities Act (ADA) guidelines.

Design the proposed intersections along Powerline Road consistent with Chapter 9.5.3 of the American Association of State Highway and Transportation Officials (AASHTO) Geometric Design Guide for intersection sight distance. Install no objects within the sight distance triangles that would block stopped drivers' view of approaching traffic.

Maintain the existing lane cross section on Powerline Road; do not install left-turn lanes. This recommendation is based on precedent established by prior developments' frontage improvements, the turn lanes' being unneeded for LOS, and the City's plan for future bike lanes along the roadway. The City should continue to monitor conditions, especially collision patterns, along the roadway for safety concerns and should pursue a corridor-wide improvement with a consistent lane cross section.

Evaluate the Powerline Road / Highway 730 intersection with further consultation with City staff and ODOT to determine the ultimate intersection control and configuration—traffic signal or roundabout, with or without additional approach lanes—necessary to mitigate the intersection performance to within ODOT operational standards.

The applicant should contribute to a future improvements at the Powerline Rd / Highway 730 intersection. The amount of the contribution should be based on the increase in traffic from the 2030 condition without the project to 2030 with the project and the cost of an improvement that will meet ODOT operational standard.

1 INTRODUCTION

The purpose of this study is to determine the impacts of the traffic generated by the Umatilla Residential Development project on the surrounding roadway infrastructure. The project site is shown on the vicinity map (Figure 1). This study will determine if mitigation is required to keep the roadways operating safely and at capacity levels acceptable under the current level of service standards. This report documents the findings and conclusions of a traffic impact analysis (TIA) conducted for the proposed site plan (Figure 2) application for property located in the City of Umatilla, Oregon (City).

1.1 Scope of Study

This study documents the existing and proposed conditions, traffic data, safety analysis, and intersection operations in accordance with the requirements of site TIA guidelines of lead agency or other agencies (Oregon Department of Transportation [ODOT]), when applicable.

The following intersections were identified for analysis:

- 1. Powerline Road / US Highway 730 (Highway 730)
- 2. Powerline Road / Pine Tree Avenue
- 3. Powerline Road / Sparrow Avenue
- 4. Powerline Road / Eagle Avenue
- 5. Powerline Road / Street at Vandelay Meadows
- 6. Powerline Road / Street at Ballard Property
- 7. Powerline Road / Riley Avenue (Street at Cheryl's Place)
- 8. Powerline Road / Interstate 82 Southbound (I-82 SB) Ramp
- 9. Powerline Road / Interstate 82 Northbound (I-82 NB) Ramp

This TIA includes analysis of future background conditions growth based on an assumed 2.0% annual growth rate and the addition of traffic from in-process projects.

This TIA is prepared for submission to the City of Umatilla. The traffic-related issues addressed in this report include:

- Existing traffic conditions
- Proposed site-generated traffic volumes and their distribution
- Build-out year (2030) conditions without and with the project
- Capacity analysis of the existing and future conditions for weekday AM and PM peak hours
- Safety analysis of the existing and future conditions
- Recommendations for mitigation of traffic impacts and conclusions

1.2 Existing Site Conditions

The existing sites span multiple tax lots along the east and west of Powerline Road, south of Pine Tree Avenue and north of CO 1226 Road. To the north of the site, there is a combination of undeveloped land and residential lots with "R-1 Single-Family Residential" zoning. To the south, there is an RV storage facility and undeveloped land. The south of the site has some "GC/CS General Commercial/Community Service" and "R-2 Medium Density Residential" zoning. To the west of the site, there is undeveloped land zoned as "R Residential Plan." To the east of the site, there is undeveloped land zoned as "EFU Exclusive Farm Use."

1.3 Existing Infrastructure

The existing infrastructure and operational traffic conditions in the study area were documented. Roadway conditions were studied to confirm that the roadway is currently operating in a safe and efficient manner.

1.3.1 Land Uses

The land uses surrounding the site are documented to help identify the site location and provide reference for any discussion of conditions that might impact the adjacent properties. The land uses surrounding the site are shown in Table 1.

Table 1. Land Uses Around the Site

North of Site				
Zoning	R-1			
Description	Single-Family Residential			
Existing Use	Residential Lots and Undeveloped Land			

S I T E

West of Site				
Zoning	EFU			
Description	Exclusive Farm Use			
Existing Use	Undeveloped Land			

East of Site			
Zoning	R		
Description	Residential Plan		
Existing Use	Undeveloped Land		

South of Site					
Zoning	GC/CS and R-2				
Description	General Commercial/Community Service and Medium Density Residential				
Existing Use	RV Storage and Undeveloped Land				

1.3.2 Existing Roadways

The existing roadway providing access to the site is Powerline Road. Data were gathered on this and other roadways in the study area to inform operations analysis of the existing roadway system. The pertinent information regarding the study area roadways is tabulated in Table 2.

Table 2. Existing Roadway Information

Denduser Name	Classification	Speed	Lane Configuration			
Roadway Name	Classification	Limit ^a	Lanes	Sidewalks	Bike Lanes	
Highway 730	ODOT: Principal Arterial City: Major Arterial	40	2	No	No	
Powerline Road	ODOT: Major Collector City: Minor Arterial	35 ^b or 50 ^c	2	Partial	No	
Pine Tree Avenue	Local	25	2	Yes	No	
Sparrow Avenue	Local	25	2	Yes	No	
Eagle Avenue	Local	25	2	Yes	No	
Interstate 82 Ramps	ODOT: Interstate	45 ^d	1	No	No	

^a Values are stated in miles per hour (mph).

Recommendation: Reduce the speed limit along Powerline Road to 35 miles per hour (mph) throughout the developments' frontages to be consistent with nearby residential portions of the roadway.

1.3.3 Major Intersections and Traffic Control

The intersections being reviewed in the study area are noted above in the scope of study. The information shown in Table 3 was gathered and is relevant to the intersection operations analysis. Table 3 presents the existing geometrics and traffic controls at the existing study intersections.

Table 3. Major Intersections: Existing Lanes and Traffic Controls

Intersection		Powerline Road	/ Highway 730	
Leg	NB	SB	WB	EB
Control	Stop	NA	Unc.	Unc.
Number of Lanes	1	NA	2	1

Intersection	Powerline Road / Pine Tree Avenue			
Leg	NB	SB	WB	EB
Control	Unc.	Unc.	Stop	Stop
Number of Lanes	1	1	1	1

Intersection		Powerline Road /	Sparrow Avenue	
Leg	NB	SB	WB	EB
Control	Unc.	Unc.	Stop	Stop
Number of Lanes	1	1	1	1

^b The posted speed along the developments' frontage is 45 mph; it is assumed the speed limit will change to 35 mph as development progresses, consistent with other residential segments of the roadway to the north.

^c The speed limit is not posted outside the Umatilla city limits; 50 mph is assumed for a rural road under county jurisdiction.

^d This is the advisory speed posted on each freeway off-ramp. The freeway mainline speed limit is 70 mph.

Intersection		Powerline Road	/ Eagle Avenue	
Leg	NB	SB	WB	EB
Control	Unc.	Unc.	Stop	Stop
Number of Lanes	1	* 1	1	1

Intersection		Powerline Road	/ I-82 SB Ramp	
Leg	NB	SB	WB	EB
Control	Unc.	Unc.	Stop	NA
Number of Lanes	1	1	1	NA

Intersection		Powerline Road ,	/ I-82 NB Ramp	
Leg	NB	SB	WB	EB
Control	Unc.	Unc.	NA	Stop
Number of Lanes	1	1	NA	1

Stop = Stop-controlled leg of intersection

The project area is defined as the vicinity of the site encompassed by the study intersections. The operation of the intersections can be controlled by signing, roundabouts, or signalization. Table 3 refers to the type of control and number of approach lanes for each leg of each intersection. The existing lane configurations and traffic controls for all intersections are shown in Figure 3.

1.4 Traffic Volumes

1.4.1 Existing Traffic Volumes

Traffic volume data were gathered from various sources for the site vicinity for the weekday PM peak period (4:00–6:00 PM). PBS retained All Traffic Data (ATD) to gather the counts. ATD collected the data on Wednesday, March 4, 2020, which had a typical school schedule, meaning traffic patterns were also typical. Of note, the volumes were counted prior to significant statewide restrictions on school hours and nonessential travel, providing a snapshot of normal traffic conditions not possible now due to the ongoing effects of the novel coronavirus/COVID-19 pandemic. Copies of the count data used are provided in Appendix A. The peak hour volumes at each intersection were input to the intersection operations analyses addressed later in this TIA.

1.4.2 Background Growth

Background growth is a generic increase in traffic volumes that either is not attributable to specific developments or is attributable to influences outside the study area. As a conservative estimate, a background growth rate of 2.0% per year, compounded annually, was applied to all 2020 existing peak hour movement volumes between public roadways at the studied intersections. The background growth volumes were calculated in a spreadsheet and are available upon request.

1.4.3 In-Process Projects

In-process trips from approved projects were requested from the City of Umatilla. The in-process projects noted by the City are the following:

Unc. = Uncontrolled leg approaching intersection - does not stop or yield

- Ambience Homes: 105 townhouse lots located 0.2 mile south of Powerline Road / Highway 730 and 0.2 mile west of Powerline road / Carolina Road (based on a TIA by Whipple Consulting Engineers, Inc., dated January 3, 2020)
- Vandelay Meadows: 26 single-family detached units located west of Powerline Road and north of
 Dark Canyon Road, projected to be occupied by or before 2030. No TIA was provided for the project,
 so trip generation was estimated by the dwelling unit count modeled with single-family detached
 housing (land use code 210) according to the Institute of Transportation Engineers' (ITE) *Trip*Generation Manual. The subdivision is assumed to access Powerline Road. Trip distribution was
 estimated to match the pattern used for Umatilla Residential Development, as follows:
 - o 75% to and from the north on Powerline Road, with the following splits:
 - 50% to and from the east on Highway 730
 - 25% to and from the west on Highway 730
 - o 25% to and from the south on Powerline Road, with the following splits:
 - 5% to and from the southwest on I-82
 - 20% to and from the south on Powerline Road
- Cheryl's Place: 26 single-family detached units located west of Powerline Road and south of Dark
 Canyon Road, projected to be occupied by or before 2030. No TIA was provided for the project, so
 trip generation was estimated by the dwelling unit count modeled with single-family detached
 housing (land use code 210) according to the ITE *Trip Generation Manual*. The subdivision is assumed
 to access Powerline Road. Trip distribution was estimated to match the pattern used for Umatilla
 Residential Development, as follows:
 - o 75% to and from the north on Powerline Road, with the following splits:
 - 50% to and from the east on Highway 730
 - 25% to and from the west on Highway 730
 - o 25% to and from the south on Powerline Road, with the following splits:
 - 5% to and from the southwest on I-82
 - 20% to and from the south on Powerline Road

The in-process projects are understood to add some trips at all the studied intersections during the PM peak hour. The in-process trips assigned to the intersections are included in this analysis and are available upon request. A copy of the in-process project trip information is provided in Appendix B.

1.4.4 Future Volumes

The baseline volumes for 2030 intersection operations analysis, termed the 2030 Without Project volumes, represent the sum of existing traffic, background growth, and the in-process projects. Figure 5 presents the 2030 Without Project volumes for the weekday PM peak hour.

Findings: Traffic volumes in the study area will continue to increase without or with the project. Generic background growth (at 2.0% for 10 years) was assumed to add approximately 22.0% to the existing traffic counts to estimate 2030 volumes. In addition, three in-process projects will generate traffic on study area roadways.

2 PROPOSED CONDITIONS

The proposed development will add traffic to the roadway system. Where the project is located, the size of the project, and when it will be completed are all important elements that need to be considered to determine the impacts of this development on safety and capacity. It is also important to examine how the project will operate with the existing transportation system, estimate how much new traffic it will generate, and predict where traffic generated by the site will be distributed. Furthermore, this section will address any funded infrastructure changes planned by other agencies or developers. All of these elements are important in assessing the traffic impacts of this project.

2.1 Project Description

The project will consist of developing 149± acres of vacant land into multiple uses that include single-family detached housing units and general commercial buildings. The site consists of three separate developments:

- Vandelay Meadows
 - o Consists of 4.52 acres of commercial general and 49 lots of single-family detached housing
 - o Located south of Eagle Avenue, north of Dark Canyon Road, and west of Powerline Road
- Cheryl's Place
 - Consists of 104 lots single-family detached housing
 - Located south of Dark Canyon Road and west of Powerline Road
- Ballard Property
 - Consists of 389 lots of single-family detached housing
 - Located south of Pine Tree Avenue and east of Powerline Road

The proposed developments are anticipated to be completely built and occupied by year 2030. The developers are collaborating to compile this single TIA for the benefit of all three developments, collectively referred to as the Umatilla Residential Development. It will comprise 542 single-family dwelling units and 37,000 square feet of gross floor area of general commercial buildings. Floor area is estimated based on a typical floor-to-area ratio (FAR) of 0.20 for single-story suburban retail developments.

This TIA analyzes the traffic impacts generated by the completed developments as required by the City. The traffic count data constituting the basis of the analyses were collected on Wednesday, March 4, 2020, prior to the implementation of significant statewide restrictions on school hours and nonessential travel, so this study provides a snapshot of typical traffic conditions not possible now due to the ongoing effects of the novel coronavirus/COVID-19 pandemic.

2.2 Access and Circulation

Powerline Road currently provides access into and out of the development sites through three local access roads (Pine Tree Avenue, Sparrow Avenue, and Eagle Avenue) that intersect Powerline Road. The project proposes another three local access roads into and out of the site on Powerline Road, as shown in Figure 2. These consist of two local access roads south of Eagle Avenue and north of Dark Canyon Road plus one local access road south of Dark Canyon Road.

Pedestrian connections will be provided between the public rights-of-way and the developments' internal roadways.

Findings: Vehicular and pedestrian connections will be provided between the Powerline Road public right-ofway and the proposed developments via six local access roads.

2.3 Trip Generation and Distribution

The following sections rely on data provided in the ITE *Trip Generation Manual*. Detailed trip generation calculations are provided in Appendix C.

2.3.1 Proposed Trip Generation

The City of Umatilla roadway network will see some increase in traffic volume from the proposed Umatilla Residential Development. Table 4 presents the preliminary uses and corresponding ITE land use models organized by land zone. The conceptual site plan on Figure 2 provides location references.

Table 4. Umatilla Residential Development Uses

Zone Code	Zone Name	Developed Size ^a	ITE Land Use Code	ITE Land Use Model	ITE Edition
R-1	Single-Family Residential	542 DU	210	Single-Family Detached Housing	10th
GC	General Commercial	37,000 SF ^b	820	Shopping Center	10th

^a DU = dwelling units; SF = square feet gross leas area; AC = acres

The total trip generation estimates for the Umatilla Residential Development were calculated using either the ITE weighted average trip rates or regression equations, following ITE guidelines.

Table 5 summarizes the project-generated trips, including the pass-by and primary trips. Detailed calculations are provided in Appendix C.

^b Floor area is estimated based on a typical floor-to-area ratio (FAR) of 0.20 for single-story suburban retail developments.

Table 5. Trip Generation Estimates for Umatilla Residential Development

Land Use (ITE Code)	Single-Family Detached Housing (210)			Shopping Center (820)	Total
Development Name	Vandelay Meadows	Cheryl's Place	Ballard Property	Vandelay Meadows	rotai
Total Average Weekday Trips (ADT)	463	982	3,672	1,397	6,514
Peak Hour	PM	PM	PM	PM	PM
In	31	65	243	68	407
Out	18	38	142	73	271
Total	49	103	385	141	678
Pass-By	0	0	0	48	48
2030 Primary Trips	49	103	385	93	630

Findings: Including all land uses and full build-out development, the Umatilla Residential Development is anticipated to generate 630 net new vehicle trips during the PM peak hour. In addition, Umatilla Residential Development is anticipated to generate 48 pass-by trips during the PM peak hour.

2.3.2 Proposed Trip Adjustments

Internal trip capture reductions were not evaluated in this TIA because the bulk of origin and destination trips are not within the site.

Pass-by trips were evaluated for the commercial general development at Vandelay Meadows. For the 37,000-square-foot shopping center (820) use, a pass-by trip rate of 34% was used, as published in the ITE *Trip Generation Handbook* (see References). Pass-by trips were applied to the PM peak periods.

2.3.3 Proposed Pass-By Trip Distribution and Assignment

The proposed distribution of pass-by trips is based on the volumes of vehicles driving past the site, specifically the northbound and southbound through-moving volumes at Powerline Road / Eagle Avenue in the 2030 Without Project conditions. Based on these volumes, the proposed pass-by trip distribution is as follows:

- 61% from northbound Powerline Road
- 39% from southbound Powerline Road

The pass-by trip assignments are as follows:

- 16 entering trips taken out from northbound-through movement at Powerline Road / Eagle Avenue intersection.
- 16 entering trips added to northbound left-turn movement at Powerline Road / Eagle Avenue intersection.

- 16 exiting trips added to eastbound left-turn movement at Powerline Road / Eagle Avenue intersection.
- 8 entering trips taken out from southbound-through movement at Powerline Road / Eagle Avenue intersection.
- 8 entering trips added to southbound right-turn movement at Powerline Road / Eagle Avenue intersection.
- 8 exiting trips added to eastbound right-turn movement at Powerline Road / Eagle Avenue intersection.

2.3.4 Proposed Trip Distribution

The proposed distribution of new (primary) trips is based on a review of the land uses within the study area, on the distribution of existing traffic patterns, and on engineering judgment. The proposed distribution pattern is as follows:

- 50% to and from east on Highway 730
- 25% to and from west on Highway 730
- 5% to and from southeast of I-82
- 20% to and from south of Powerline Road

The distribution pattern above represents an external distribution of the net new trips entering and exiting the study area. The distribution and assignment of the project's net new trips are shown on Figure 7.

2.3.5 Future Volumes with Project

Figure 8 presents the 2030 With Project volumes, or the sum of Without Project volumes and the net site-generated trips, for the weekday PM peak hour.

3 INTERSECTION OPERATIONS AND ROADWAY CAPACITY ANALYSES

3.1 Operations Description

Traffic operations are assessed in terms of level of service (LOS), a concept developed by transportation engineers to qualify the level of operation of intersections and roadways (*Highway Capacity Manual*, see References). LOS measures are classified in grades "A" through "F," indicating a range of operation, with LOS "A" signifying the best level of operation and LOS "F" representing the worst level.

LOS at unsignalized intersections is quantified in terms of average delay per vehicle. LOS "A" reflects full freedom of operation for a driver, while LOS "F" represents operational failure. The criteria are based on the theory of gap acceptance for stop-controlled approaches.

The volume-to-capacity (v/c) ratio quantifies the portion of the theoretical capacity consumed by traffic demand volume. A v/c ratio of zero (0.00) reflects none of the capacity is consumed and all the capacity is fully available. A v/c ratio of one (1.00) reflects all the capacity is consumed and represents operational failure. The v/c ratio can be calculated for an intersection approach lane or for a signalized intersection as a whole, with the latter calculation aggregating the v/c ratios of the critical movements.

3.2 Operation Standards

The City of Umatilla Transportation System Plan references ODOT's minimum requirements which has LOS D for signalized intersections and LOS E for unsignalized two-way-stop-controlled (TWSC) conditions. The LOS is based on the v/c for highways outside of the city's limit (Highway 730 and I-82 interchange) when the development is in full service.

ODOT has a mobility standard of a v/c ratio 0.85 or less for Highway 730 at Powerline Road based on its classification and location:

- Regional highway
- Outside a metropolitan planning organization (MPO)
- Outside any adopted Special Transportation Area (STA)
- Inside an urban growth boundary (UGB)
- With a posted speed greater than 35 mph and less than 45 mph

ODOT has a mobility standard of a v/c ratio 0.70 or less for interstate highways for locations outside a UGB and on rural lands. This is applicable to the I-82 interchange in this report.

3.3 Analysis Methodology

Traffic impacts were estimated to determine the extent of change in traffic conditions caused by future development. In order to make this determination, the following assumptions were employed:

- The individual peak hour volumes were analyzed for the 2020 existing year and 2030 future conditions.
- The analysis is based on the PM peak hour of the adjacent streets.
- In-process trips generated by 3 developments were included in the analysis.
- The peak hour factor (PHF) for the overall intersection, as calculated from the count data, was applied for each analysis scenario. At intersections that count data was estimated using engineering judgement, a peak hour factor of 0.85 was used.

- The heavy vehicle percentage (HV%) for each movement, as calculated from the count data, was applied for all analysis scenarios. For intersections that count data was estimated, 1.0% was assumed for each movement. A minimum value of 2.0% was assumed for each movement in the future conditions (2030).
- As noted previously, trip generation, distribution, and assignment estimates for the project were prepared for the weekday PM peak hour on the surrounding street system.
- Cumulative traffic impacts of the proposed project were determined by superimposing the
 project-generated traffic onto the baseline volumes for the weekday PM peak hour at studied
 intersections. This sum is termed the 2030 With Project conditions.
- The LOS for the signalized intersection was calculated with Trafficware's Synchro software, Version 10, based on *Highway Capacity Manual* (HCM) 6th Edition (2016) methodologies. The ODOT protocol for Synchro analysis at signalized intersections was used to calculate the intersection v/c ratio.
 - o TWSC intersection results report the critical movement LOS, delay, and v/c ratio.

LOS calculation reports for the study area intersections are provided in Appendix D. The key analysis findings are listed in the following tables.

3.4 Level of Service Analyses

3.4.1 2020 Existing Conditions

Table 6 presents the LOS analysis for the studied intersection for 2020 existing conditions during the PM peak hour. Detailed LOS calculation reports are provided in Appendix D.

Table 6. Estimated 2020 Level of Service for Existing Conditions for Study Area Intersections

INTERSECTION	PM Peak Hour			
(critical lane group)	LOS	Delay (sec/veh)	v/c	
Powerline Road / Highway 730 (NB)	С	16.6	0.311	
Powerline Road / Pine Tree Avenue (EB)	В	10.3	0.016	
Powerline Road / Sparrow Avenue (EB)	В	10.1	0.011	
Powerline Road / Eagle Avenue (EB)	Α	9.9	0.006	
Powerline Road / Street at Vandelay Meadows	Ξ.	9.7	-	
Powerline Road / Street at Ballard Property	æ).#Si	-	
Powerline Road / Riley Avenue (Street at Cheryl's Place)	æ.,)/#	-	
Powerline Road / I-82 SB Ramp (WB)	В	10.4	0.093	
Powerline Road / I-82 NB Ramp (EB)	В	10.2	0.044	

dash = intersection does not exist currently

As shown in Table 6, all studied intersections currently operate at an acceptable LOS during the weekday PM peak hour.

Findings: All studied intersections currently operate at an acceptable LOS during the weekday PM peak hour.

3.4.2 2030 Future Conditions Without Project

Table 7 presents the LOS analysis for the studied intersections for 2030 without the project during the PM peak hour. Detailed LOS calculation reports are provided in Appendix D.

Table 7. Estimated 2030 Level of Service without Project for Study Area Intersections

INTERSECTION	PM Peak Hour			
(critical lane group)	LOS	Delay (sec/veh)	v/c	
Powerline Road / Highway 730 (NB)	Ε	37.1	0.687	
Powerline Road / Pine Tree Avenue (EB)	В	11.4	0.024	
Powerline Road / Sparrow Avenue (EB)	В	11.1	0.016	
Powerline Road / Eagle Avenue (EB)	В	10.9	0.010	
Powerline Road / Street at Vandelay Meadows (EB)	В	10.6	0.018	
Powerline Road / Street at Ballard Property	- F	91	<u> </u>	
Powerline Road / Riley Avenue (Street at Cheryl's Place) (EB)	В	10.4	0.017	
Powerline Road / I-82 SB Ramp (WB)	В	11.2	0.126	
Powerline Road / I-82 NB Ramp (EB)	В	11.1	0.067	

dash = intersection does not exist in this analysis scenario

As shown in Table 7, all studied intersections will operate at an acceptable or marginally acceptable LOS in the 2030 Without Project conditions during the weekday PM peak hour. For Powerline Road / Highway 730, ODOT stipulates that LOS E is generally considered "marginally acceptable" based on a portion of City of Umatilla *Transportation System Plan, Section 12.2.204 Unsignalized Intersections (TSP,* see References).

Findings: All studied intersections will operate at an acceptable or marginally acceptable LOS during 2030 Without Project conditions in the weekday PM peak hour. The Powerline Road / Highway 730 intersection will operate at a "marginally acceptable" LOS E.

3.4.3 2030 Future Conditions With Project

Table 8 presents the LOS analysis for the studied intersection for 2030 with the project during the PM peak hour. Detailed LOS calculation reports are provided in Appendix D.

Table 8. Estimated 2030 Level of Service With Project for Study Area Intersections

INTERSECTION	PM Peak Hour			
(critical lane group)	LOS	Delay (sec/veh)	v/c	
Powerline Road / Highway 730 <i>(NB)</i>	F	683.2	2.391	
Powerline Road / Pine Tree Avenue (EB)	С	23.5	0.066	
Powerline Road / Sparrow Avenue (EB)	С	17.6	0.032	
Powerline Road / Eagle Avenue (EB)	С	22.9	0.328	
Powerline Road / Street at Vandelay Meadows (EB)	В	13.7	0.061	
Powerline Road / Street at Ballard Property (WB)	В	12.6	0.120	
Powerline Road / Riley Avenue (Street at Cheryl's Place) (EB)	В	12.7	0.108	
Powerline Road / I-82 SB Ramp <i>(WB)</i>	В	13.1	0.159	
Powerline Road / I-82 NB Ramp (EB)	В	12.9	0.123	

As shown in Table 8, all except one of the studied intersections will operate at an acceptable LOS in the 2030 With Project conditions during the weekday PM peak hour. The Powerline Road / Highway 730 intersection will operate at LOS F and with a v/c ratio of 2.391.

Findings: All studied intersections will operate at an acceptable LOS in the 2030 With Project conditions during the weekday PM peak hour except for Powerline Road / Highway 730, which will operate at LOS F and over capacity.

3.5 Signal Warrant Evaluation

The criteria for the analysis for traffic signal warrants at intersections is based on the ODOT *Analysis Procedures Manual* (APM, see References). The ODOT Transportation Planning Analysis Unit has also developed a set of "preliminary" traffic signal warrants, which are based on a portion of the *Manual on Uniform Traffic Control Devices* (MUTCD, see References) warrants but require less data for analysis.

Preliminary traffic signal warrants were evaluated at the Powerline Road / Highway 730 intersection for the 2030 With Project conditions. A traffic signal was found not to meet the warrant conditions. Output for ODOT Preliminary Signal Warrant (PSW) is attached in Appendix E. None of the other studied intersections exhibit LOS deficiencies, so none were evaluated for signal warrants.

Findings: No studied intersections meet ODOT preliminary traffic signal warrants.

4 SAFETY ANALYSIS

4.1 Left-Turn Lane Analysis

The criteria for the provision of left-turn lanes at uncontrolled intersection approaches are based on the ODOT *Analysis Procedure Manual* Version 2 (see References), Exhibit 12-1, Left-Turn Lane Criterion, Texas Transportation Institute curves. The exhibit provides guideline curves for posted speeds of 35, 45, and 55 mph. Appendix F presents the approaches that met the criteria for left-turn lanes. The posted speed along Powerline Road is assumed to be 35 mph following the project's development.

A left-turn lane is merited on the following approaches:

- Southbound Powerline Road at Pine Tree Avenue, at 2030 With Project conditions
- Southbound Powerline Road at Sparrow Avenue, at 2030 With Project conditions
- Southbound Powerline Road at Eagle Avenue, at 2030 With Project conditions
- Northbound Powerline Road at Eagle Avenue, at 2030 With Project conditions
- Southbound Powerline Road at Street at Ballard Property, at 2030 With Project conditions

As listed above, some of the existing and proposed intersections along Powerline Road merit left-turn lanes, while others do not. The provision of dedicated turn lanes on an uncontrolled roadway is a safety consideration; these turn lanes are not needed for LOS, as indicated in the Intersection Operations section above.

As noted in the Bicycle Facilities section below, the City has identified Powerline Road for future installation of bicycle lanes, yet the curb-to-curb width established by prior developments' frontage improvements does not accommodate both turn lanes and bicycle lanes at standard widths. The remaining options for Powerline Road include:

- Do nothing: retain the existing shared travel lanes.
- Install left-turn lanes at the locations noted or provide a continuous two-way left-turn lane.
- Install bicycle lanes alongside the existing shared travel lanes.
- Evaluate the feasibility of installing narrow (5 feet wide) bicycle lanes and narrow (10 feet wide) travel and turn lanes.

It is recommended to retain the existing shared travel lanes on Powerline Road at this time, consistent with the existing lane cross sections. This will allow for further evaluation of a consistent corridor treatment and for the City to determine which of the options above will be best suited to the community's goals.

Findings: Five approaches meet the volume criterion for a left-turn lane:

- Southbound Powerline Road at Pine Tree Avenue
- Southbound Powerline Road at Sparrow Avenue
- Southbound Powerline Road at Eagle Avenue
- Northbound Powerline Road at Eagle Avenue
- Southbound Powerline Road at Street at Ballard Property

Recommendation: Maintain the existing lane cross section on Powerline Road; do not install left-turn lanes. This recommendation is based on precedent established by prior developments' frontage improvements, the turn lanes' being unneeded for LOS, and the City's plan for future bike lanes along the roadway. The City should continue to monitor conditions, especially collision patterns, along the roadway for safety concerns and should pursue a corridor-wide improvement with a consistent lane cross section.

4.2 Right-Turn Lane Analysis

The criteria for the analysis of right-turn lanes at uncontrolled intersection legs are based on the ODOT *Analysis Procedure Manual* Version 2 (see References), Right-Turn Lane Criterion (Exhibit 12-2). Appendix F presents the approach that meets the criteria for right-turn lanes.

A right-turn lane is merited on the following approach:

• Eastbound Highway 730 at Powerline Road, at 2030 Without Project conditions

A right-turn lane will be merited in 2030 Without Project conditions; therefore, the Umatilla Residential Development is not responsible for the cost associated with the addition on the eastbound right-turn lane.

Findings: One approach meets the volume criterion for a right-turn lane:

Eastbound Highway 730 at Powerline Road

4.3 Collision Analysis

Collision data from the study area was obtained from ODOT for the five-year period spanning from December 2013 through December 2018. This analysis assumes that a collision rate less than the critical collision rate for the intersection is typically considered to be within acceptable parameters. A collision rate above the critical rate is worthy of further examination. The detailed collision data can be found in Appendix G. Table 9 presents the results of the collision analysis.

Table 9. Collision Analysis for Study Area Intersections (December 2013 through December 2018)

	Carried Control of the Control of th		· v			
Intersection	Angle	Sideswipe	Overturn	Total Collisions	Critical Rate	Collison Rate
Powerline Road / Highway 730	1	w)	-	1	0.87	0.05
Powerline Road / Pine Tree Avenue	1	1	3	2	1.07	0.41
Powerline Road / Sparrow Avenue		5 x		0	1.08	0.00
Powerline Road / Eagle Avenue	*:	-	÷	0	1.10	0.00
Powerline Road / I-82 SB Ramp	E.	e	78	0	1.07	0.00
Powerline Road / I-82 NB Ramp	-	2	1	1	1.05	0.18

To calculate the collision rate, the PM peak hour total entering volumes from the existing turning movement counts were multiplied by 10 to provide an approximation of the average daily trips (ADT). Detailed calculations of critical rates and collision rates are provided in Appendix G.

As shown in Table 9, all the calculated collision rates are lower than the critical rates. Because of the low number of crashes and lack of serious injuries at the intersections within the study area, no significant pattern was found.

Findings: The 2013–2018 collision history at the study intersections was reviewed; all intersections have collision rates lower than the critical rate, and no patterns of collision types or of severe collisions were identified.

4.4 Transit, Pedestrian, and Bicycle Facilities

Most roadways within the study area have sidewalks or off-street paths for pedestrians, as noted in Table 2. On-street bike lanes currently do not exist along both sides of the several studied roadways, as noted in Table 2.

With the proposed development, sidewalks will be constructed along the Powerline Road frontage and internal residential streets. There is a pedestrian bridge approximately 0.6 mile north of Powerline Road and Pine Tree Avenue intersection that connects Powerline Road to the Clara A Brownell Middle School Campus. Sidewalks to the pedestrian bridge from Vandelay Meadows, Ballard Property, and Cheryl's Place do not connect. In the City of Umatilla's Pedestrian and Bicycle Plan (Appendix 12.4-B-1), there is a plan to have bicycle lanes on Powerline Road that would connect the proposed developments to the pedestrian bridge.

Transit services are provided by Kayak Public Transit in the central city of Umatilla, specifically the Hopper. This service is available but is not within walking range of the proposed developments.

Findings: Sidewalks, bike lanes, and off-street paths are available along several roadways within the study area. The development will construct new pedestrian and/or bicycle facilities along internal streets, connecting to current facilities where they exist and anticipating future connections.

Recommendations: Assure all driveways, sidewalks, and curb ramps constructed with the project comply with the current Americans with Disabilities Act (ADA) guidelines.

4.5 Intersection Sight Distance

Chapter 9.5.3 of the American Association of State Highway and Transportation Officials (AASHTO) Geometric Design Guide (see References) provides recommendations for intersection sight distance (ISD) at stop-controlled approaches to uncontrolled roadways (AASHTO case B). The proposed Umatilla Residential Development site accesses that exist (Pine Tree, Sparrow, and Eagle Avenues) are assumed to have adequate ISD. Based on this assumption and the alignment of Powerline Road, ISD is presumed to be available at the proposed Umatilla Residential Development site accesses that do not currently exist: Street at Vandelay Meadows, Street at Ballard Property, and Riley Avenue (Street at Cheryl's Place).

To assure compliant conditions, it is recommended to design the proposed intersections along Powerline Road in accordance with AASHTO guidelines for ISD. Install no objects within the sight distance triangles that would block stopped drivers' view of approaching traffic.

Findings: The proposed Umatilla Residential Development site accesses that exist are assumed to have adequate intersection sight distance. Adequate intersection sight distance is presumed to be available at the proposed Umatilla Residential Development accesses.

Recommendation: Design the proposed intersections along Powerline Road consistent with Chapter 9.5.3 of the AASHTO Geometric Design Guide for ISD. Install no objects within the sight distance triangles that would block stopped drivers' view of approaching traffic.

5 INTERSECTION MITIGATION

Table 10 presents some possible mitigations for the Powerline Road / Highway 730 intersection that operates below the acceptable LOS in the 2030 With Project scenario. A summary of LOS calculations for mitigated intersections are presented in Appendix H.

Table 10. Mitigated 2030 With Project Level of Service at Powerline Road / Highway 730 Intersection

	Improvement		PM Peak Hour			
INTERSECTION			Delay (sec/veh)	v/c (Critical Movement)		
Powerline Road / Highway 730	None – 2030 Without Project Conditions	E 37.1		0.687 (NB)		
	None – 2030 With Project Conditions	F	683.2	2.391 <i>(NB)</i>		
	Add EB RT Lane + NB LT Lane	F	440.7	1.698 (NB-LT)		
	Signal ^a + EB-RT Lane + NB LT Lane	В	12.7	0.47		
	Single-Lane Roundabout ^b	С	18.0	0.841 (EB)		

^aDoes not meet peak hour signal warrant

As shown in Table 10, conditions at the Powerline Road / Highway 730 intersection can be improved, but not sufficiently, by the addition of turn lanes to the existing stop-controlled configuration. Conditions can be mitigated by installation of a traffic signal and the addition of turn lanes; however, a traffic signal is not warranted. Conditions also can be mitigated by installation of a single-lane roundabout based on a preliminary roundabout analysis in Synchro; however, right-of-way is limited.

Based on this study, it is found that the Umatilla Residential Development generates 57% of the total increase in trips. Further study, consultation with City staff, and approval by ODOT are needed to determine the ultimate intersection control and configuration.

Finding: The project's impacts at the Powerline Road / Highway 730 intersection can be mitigated by upgrading the traffic control, either to a traffic signal with additional turn lanes or with a single-lane roundabout.

Finding: The project generates 57% of the total increase in trips from 2020 existing conditions to 2030 with project conditions.

Recommendation: Evaluate the Powerline Road / Highway 730 intersection with further consultation with City staff and ODOT to determine the ultimate intersection control and configuration—traffic signal or roundabout, with or without additional approach lanes—necessary to mitigate the intersection performance to within ODOT operational standards.

Recommendation: The applicant should contribute to a future improvements at the Powerline Rd / Highway 730 intersection. The amount of the contribution should be based on the increase in traffic from the 2030 condition without the project to 2030 with the project and the cost of an improvement that will meet ODOT operational standard.

^bAdd eastbound right-turn lane and westbound left-turn lane with channelized westbound through lane

6 STUDY FINDINGS

The findings of this TIA are listed below.

6.1 Future Traffic Volumes Increase

Traffic volumes in the study area will continue to increase without or with the project. Generic background growth (at 2.0% for 10 years, compounded annually) was assumed to add approximately 22.0% to the existing traffic counts to estimate 2030 volumes. In addition, three in-process projects will generate traffic on study area roadways.

6.2 Access and Circulation

Vehicular and pedestrian connections will be provided between the Powerline Road public right-of-way and the proposed developments via six local access roads.

6.3 Trip Generation

Including all land uses and full built-out development, the Umatilla Residential Development is anticipated to generate 630 net new vehicle trips during the PM peak hour. In addition, Umatilla Residential Development is anticipated to generate 48 pass-by trips during the PM peak hour.

6.4 Intersection Performance

Nine intersections were evaluated for operational performance based on LOS and v/c ratio, which measure traffic operations. All locations operate within the applicable LOS standard during all analysis scenarios, both without and with the project trips.

All studied intersections currently operate at an acceptable LOS during the weekday PM peak hour.

All studied intersections will operate at an acceptable LOS during the 2030 Without Project condition in the weekday PM peak hour except for Powerline Road / Highway 730 that operates at a "marginally acceptable" level.

All studied intersections currently operate at an acceptable LOS during the weekday PM peak hour except for Powerline Road / Highway 730 that operates at LOS F.

6.5 Signal Warrant Analysis

No studied intersections meet ODOT preliminary traffic signal warrants.

6.6 Left and Right Turn Analysis

Five approaches meet the volume criterion for a left-turn lane:

- Southbound Powerline Road at Pine Tree Avenue
- Southbound Powerline Road at Sparrow Avenue
- Southbound Powerline Road at Eagle Avenue
- Northbound Powerline Road at Eagle Avenue
- Southbound Powerline Road at Street at Ballard Property

Findings: One approach meets the volume criterion for a right-turn lane:

Eastbound Highway 730 at Powerline Road

6.7 Collision Analysis

The 2013–2018 collision history at the study intersections was reviewed; all intersections have collision rates lower than the critical rate, and no patterns of collision types or of severe collisions were identified.

6.8 Transit, Pedestrian, and Bicycle Facilities

Sidewalks, bike lanes, and off-street paths are available along several roadways within the study area. The development will construct new pedestrian and/or bicycle facilities along internal streets, connecting to current facilities where they exist and anticipating future connections.

6.9 Intersection Sight Distance

The proposed Umatilla Residential Development site accesses that exist are assumed to have adequate sight distance available. Adequate intersection sight distance is presumed to be available at the proposed Umatilla Residential Development accesses.

6.10 Effective Project Mitigation

The project's impacts at the Powerline Road / Highway 730 intersection can be mitigated by upgrading the traffic control, either to a traffic signal with additional turn lanes or with a single-lane roundabout.

The project generates 57% of the total increase in trips from 2020 existing conditions to 2030 with project conditions.

7 RECOMMENDATIONS

The traffic impact analysis supports the following recommendations.

7.1 Speed Limit

Reduce the speed limit along Powerline Road to 35 mph throughout the developments' frontages.

7.2 Accessibility

Assure all driveways, sidewalks, and curb ramps constructed with the project comply with the current ADA guidelines.

7.3 Intersection Turn Lanes

Maintain the existing lane cross section on Powerline Road; do not install left-turn lanes. This recommendation is based on precedent established by prior developments' frontage improvements, the turn lanes' being unneeded for LOS, and the City's plan for future bike lanes along the roadway. The City should continue to monitor conditions, especially collision patterns, along the roadway for safety concerns and should pursue a corridor-wide improvement with a consistent lane cross section.

7.4 Driveway Sight Lines

Design the proposed Powerline Road intersections consistent with Chapter 9.5.3 of the AASHTO Geometric Design Guide for ISD. Install no objects within the sight distance triangles that would block stopped drivers' view of approaching traffic.

7.5 Intersection Mitigation

Evaluate the Powerline Road / Highway 730 intersection with further consultation with City staff and ODOT to determine the ultimate intersection control and configuration—traffic signal or roundabout, with or without additional approach lanes—necessary to mitigate the intersection performance to within ODOT operational standards.

The applicant should contribute to a future improvements at the Powerline Rd / Highway 730 intersection. The amount of the contribution should be based on the increase in traffic from the 2030 condition without the project to 2030 with the project and the cost of an improvement that will meet ODOT operational standard.

8 REFERENCES

American Association of State Highway and Transportation Officials (AASHTO). (2011). A Policy on the Geometric Design of Highways and Streets, 6th Edition.

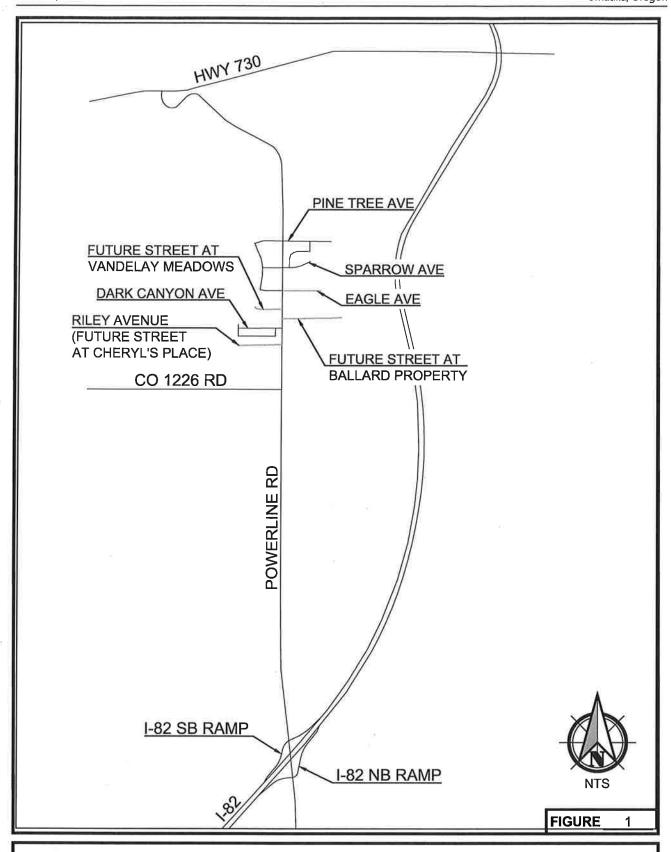
Federal Highway Administration. (2009 Edition with May 2012 Revisions). *Manual on Uniform Traffic Control Devices*.

Institute of Transportation Engineers (ITE). (2004). Trip Generation Handbook, 2nd Edition.

Institute of Transportation Engineers. (2017). Trip Generation Manual, 10th Edition.

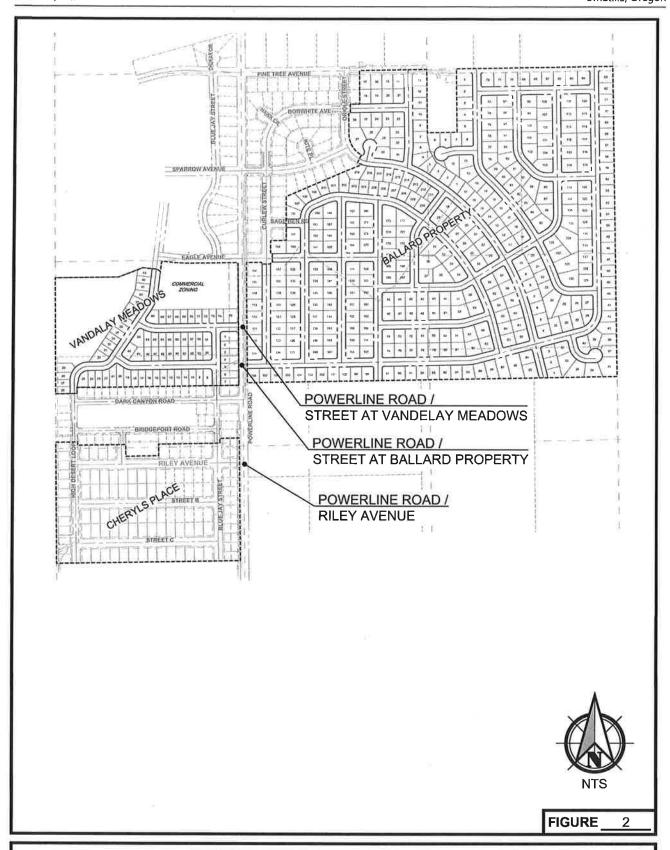
Transportation Research Board, National Research Council. (2016). *Highway Capacity Manual* (HCM), 6th Edition.

Oregon Department of Transportation (ODOT). (January 2020). ODOT Analysis Procedure Manual, Version 2.

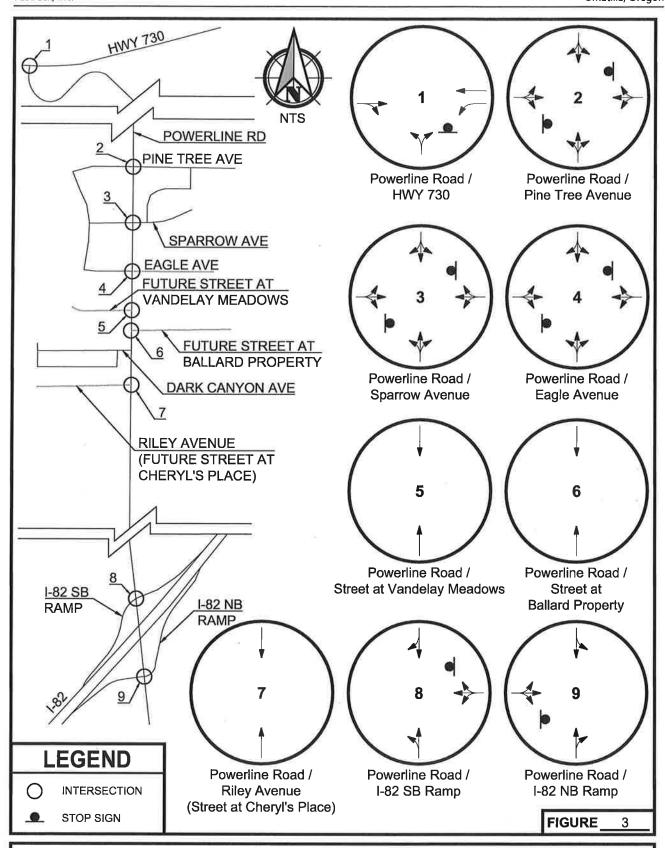

Oregon Department of Transportation (ODOT). (August 2005). Oregon Highway Plan.

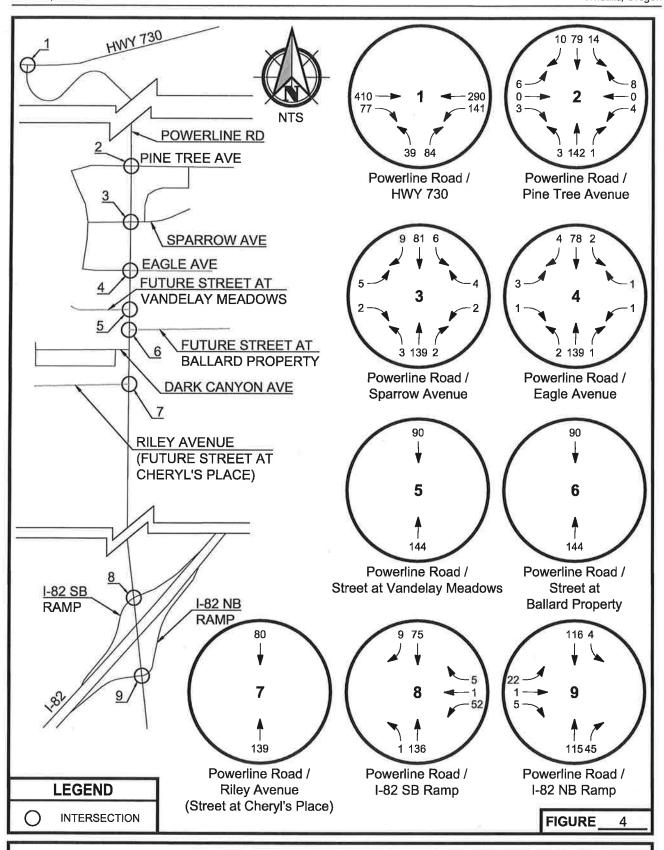
City of Umatilla (City). Comprehensive Plan, 1999.

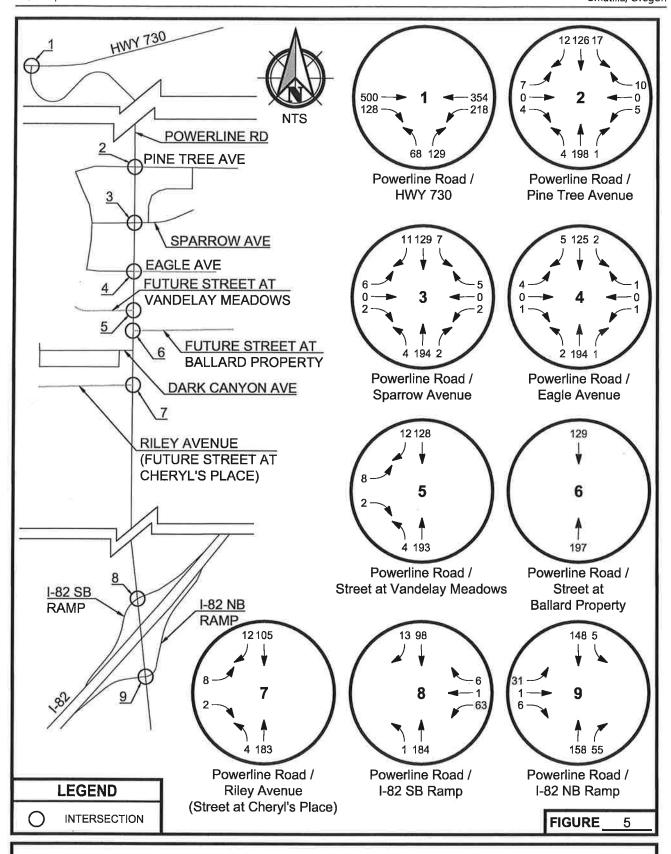
City of Umatilla (City). Transportation System Plan (TSP), 1999.

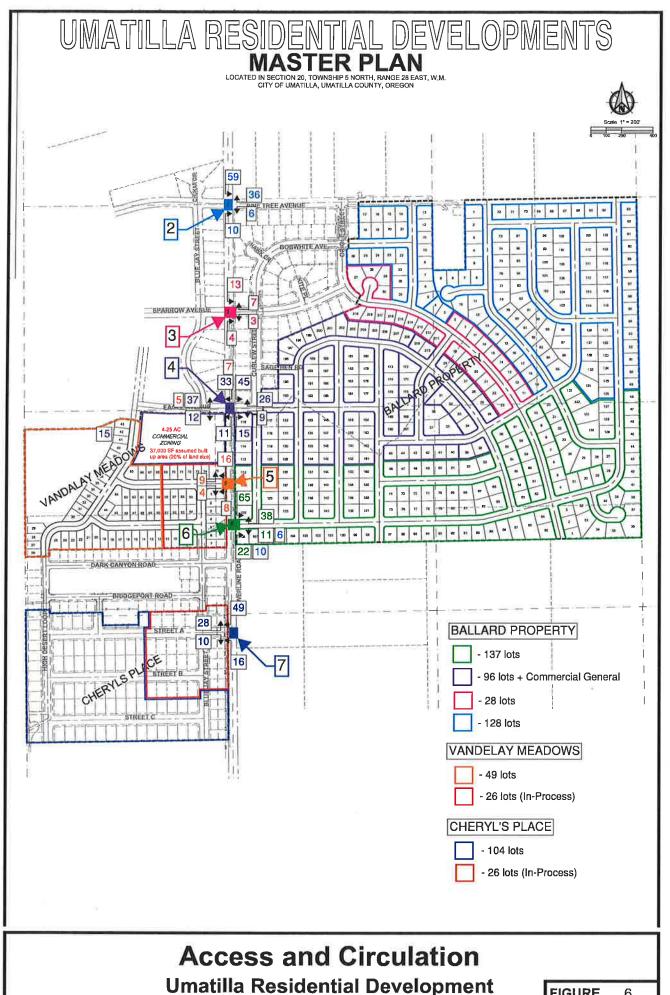


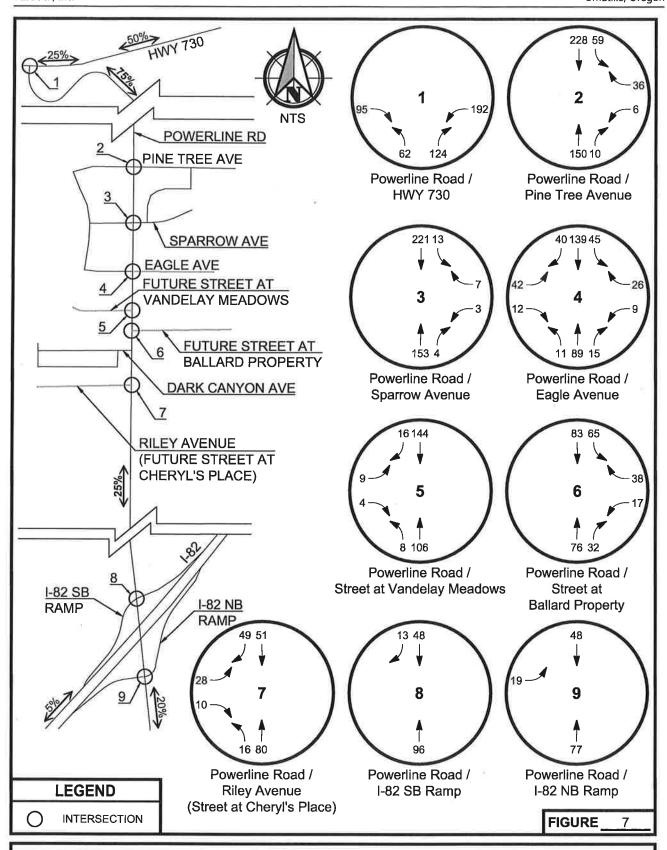
Figures


Vicinity Map Umatilla Residential Development

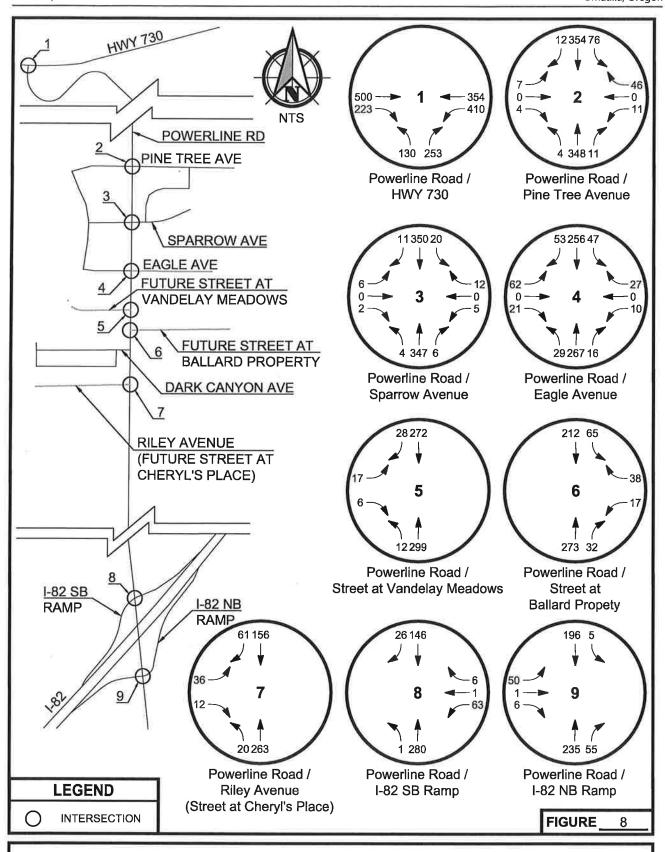

Site Plan Umatilla Residential Development


Existing Lane Configurations and Traffic Controls
Umatilla Residential Development


Existing 2020 VolumesUmatilla Residential Development



2030 Without Project Volumes Umatilla Residential Development

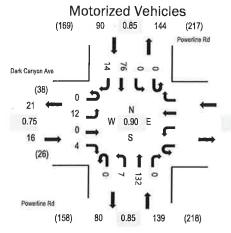


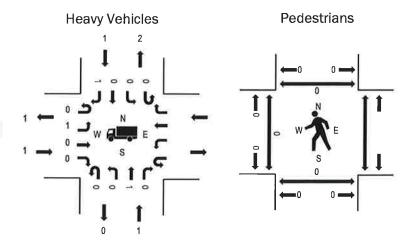
FIGURE

2030 Primary Trip Distribution and Assignment
Umatilla Residential Development

2030 With Project Volumes Umatilla Residential Development

Appendix A Traffic Counts




Location: Powerline Rd & Dark Canyon Ave PM

Date: Wednesday, March 4, 2020 Peak Hour: 04:40 PM - 05:40 PM

Peak 15-Minutes: 04:45 PM - 05:00 PM

Peak Hour

Note: Total study counts contained in parentheses.

	HV%	PHF
EB	6.3%	0.75
WB		
NB	0.7%	0.85
SB	1.1%	0.85
All	1.2%	0.90

Interval			anyon Ave bound			West	bound				line Rd bound				line Rd bound			Rollin
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hou
4:00 PM	0	0	0	0					0	0	6	0	0	0	10	1	17	21
4:05 PM	0	0	0	0					0	3	6	0	0	0	9	1	19	21
4:10 PM	0	0	0	0					0	0	6	0	0	0	6	0	12	21
4:15 PM	0	0	0	2					0	0	11	0	0	0	9	3	25	22
4:20 PM	0	. 0	0	2		3			0	0	7	0	0	0	12	0	21	22
4:25 PM	0	0	0	0					0	2	6	0	0	0	7	0	15	22
4:30 PM	0	3	0	0					0	1	4	0	0	0	6	1	15	22
4:35 PM	0	0	0	0					0	0	3	0	0	0	4	0	7	22
4:40 PM	0	0	0	1					0	1	8	0	0	0	9	0	19	24
4:45 PM	0	4	0	0	1 2 2	8	178	-	0	0	12	0	0	0	9	- 1	26	24
4:50 PM	0	0	0	. 0					0	0	131	0	0	0	5	. 1	19	22
4:55 PM	0	2	0	0					0	0	10	0	0	0	9	2	23	21
5:00 PM	0	2	0	0					0	1	5	0	0	0	3	4	15	
5:05 PM	0	2	0	0					0	1	8	0	0	0	6	0	17	
5:10 PM	0	0	0	0					0	2	9	0	0	0	6	1	18	
5:15 PM	0	0	0	-1					0	0	17	0	0	0	10	0	28	
5:20 PM	0	0	0	0					0	0	12	0	0	0	3	3	18	
5:25 PM	0	1	0	1					0	0	12	0	0	0	5	1	20	
5:30 PM	0	1.	0	0					0	1	12	0	0	0	2	0	16	
5:35 PM	0	0	0	1					0	1	14	0	0	0	9	1	26	
5:40 PM	0	0	0	0					0	1	8	0	0	0	3	2	14	
5:45 PM	0	0	0	2					0	1	5	0	0	0	2	0	10	
5:50 PM	0	0	0	1					0	1	8	0	0	0	3	0	13	
Count Total	0	15	0	11					0	16	202	0	0	0	147	22	413	
Peak Hour	0	12	0	4					0	7	132	0	0	0	76	14	245	

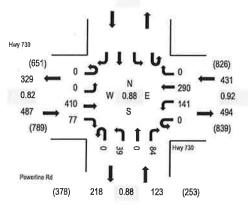
Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles on Crosswalk

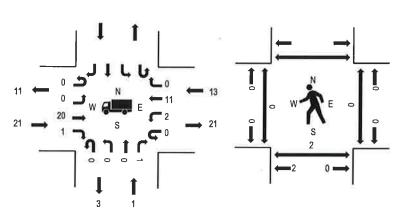
Interval		Hea	avy Vehicl	es		Interval		Bicycle	es on Roa	dway		Interval	Pe	destrians/l	Bicycles o	n Crosswa	ılk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
4:00 PM	0	0		0	0	4:00 PM	0	0		0	0	4:00 PM	0	0		0	0
4:05 PM	0	0		0	0	4:05 PM	0	0		0	0	4:05 PM	0	0		0	0
4:10 PM	0	0		0	0	4:10 PM	0	0		0	0	4:10 PM	0	0		0	0
4:15 PM	0	1		0	1	4:15 PM	0	0		0	0	4:15 PM	0	0		0	0
4:20 PM	0	0		0	0	4:20 PM	0	0		0	0	4:20 PM	0	0		0	0
4:25 PM	0	0		0	0	4:25 PM	0	0		0	0	4:25 PM	0	0		0	0
4:30 PM	0	1		0	1	4:30 PM	0	0		0	0	4:30 PM	0	0		0	0
4:35 PM	0	0		1	1	4:35 PM	0	0		0	0	4:35 PM	0	0		0	0
4:40 PM	0	0		0	0	4:40 PM	0	0		0	0	4:40 PM	0	0		0	0
4:45 PM	0	0		0	0	4:45 PM	0	0	to war 1	8	0	4:45 PM	0	0		- 0	0
4:50 PM	. 0	0		0	0	4:50 PM	0	0		0	0	4:50 PM	0	0		0	0
4:55 PM	0	0		0	. 0	4:55 PM	0	0		- 10	0	4:55 PM	0	0		0	0.
5:00 PM	0	0		1	1	5:00 PM	0	0		0	0	5:00 PM	0	0		0	0
5:05 PM	1	1		0	2	5:05 PM	0	0		0	0	5:05 PM	0	0		0	0
5:10 PM	0	0		0	0	5:10 PM	0	0		0	0	5:10 PM	0	0		0	0
5:15 PM	0	0		0	0	5:15 PM	0	0		0	0	5:15 PM	0	0		0	0
5:20 PM	0	0		0	0	5:20 PM	0	0		0	0	5:20 PM	0	0		0	0
5:25 PM	0	0		0	0	5:25 PM	0	0		0	0	5:25 PM	0	0		0	0
5:30 PM	0	0		0	0	5:30 PM	0	0		0	0	5:30 PM	0	0		0	0
5:35 PM	0	0		0	0	5:35 PM	0	0		0	0	5:35 PM	0	0		0	0
5:40 PM	0	0		0	0	5:40 PM	0	0		0	0	5:40 PM	0	0		0	0
5:45 PM	0	0		0	0	5:45 PM	0	0		0	0	5:45 PM	0	0		0	0
5:50 PM	0	0		1	1	5:50 PM	0	0		0	0	5:50 PM	0	0		0	0
Count Total	1	3		3	7	Count Total	0	0		0	0	Count Total	0	0		0	0
Peak Hour	- 1	4		1	3	Peak Hour	0	0		0	0	Peak Hour	0	0		0	0

Location: Powerline Rd & Hwy 730 PM

Date: Wednesday, March 4, 2020

Peak Hour: 04:05 PM - 05:05 PM


Peak 15-Minutes: 04:40 PM - 04:55 PM


Peak Hour

Motorized Vehicles

Heavy Vehicles

Pedestrians

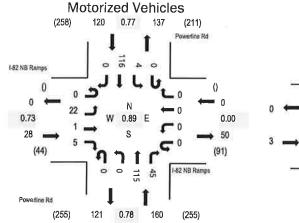
Note: Total study counts contained in parentheses.

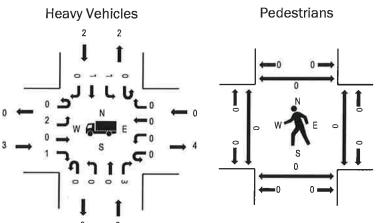
	HV%	PHF
EB	4.3%	0.82
WB	3.0%	0.92
NB	0.8%	88.0
SB		
All	3.4%	0.88

Interval		East	y 730 bound			West	y 730 bound			North	line Rd bound			South	nbound			Rollin
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hou
4:00 PM	0	0	39	9	0	8	17	0	0	1	0	3					77	1,02
4:05 PM	0	0	38	6	0	10	21	0	0	3	0	7					85	1,04
4:10 PM	0	0	40	13	0	9	12	0	0	0	0	12					86	1,03
4:15 PM	0	0	38	9	0	8	22	0	0	6	0	6					89	1,02
4:20 PM	0	0	48	4	0	14	24	0	0	_ 3	0	4					97	1,00
4:25 PM	0	0	34	13	0	9	17	0	0	8	0	7					88	97
4:30 PM	0	0	29	2	0	13	26	0	0	2	0	6					78	96
4:35 PM	0	0	23	6	0	7	24	0	0	2	0	3					65	9
4:40 PM	0	0	43	5	0	11	25	.0	0	1.	0	9	To U.S.	150			94	9
4:45 PM	0	. 0	43	5	0	18	35	0	0	2	0	11					114	9
4:50 PM	0	0	17	.4	0	.14	40	0	0	7	0	7					89	9
4:55 PM	0	0	27	4	0	11	13	0	0	0	0	4					59	9
5:00 PM	0	0	30	6	0	17	31	0	0	5	0	8					97	
5:05 PM	0	0	24	4	0	7	27	0	0	6	0	7					75	
5:10 PM	0	0	21	8	0	10	27	0	0	5	0	7					78	
5:15 PM	0	0	25	4	0	9	23	0	0	1	0	8					70	
5:20 PM	0	0	20	5	0	8	23	0	0	6	0	6					68	
5:25 PM	0	0	19	2	0	11	33	0	0	5	0	12					82	
5:30 PM	0	0	21	4	0	12	23	0	0	6	0	6					72	
5:35 PM	0	0	25	2	0	14	35	0	0	4	0	8					88	
5:40 PM	0	0	30	1	0	13	29	0	0	7	0	8					88	
5:45 PM	0	0	21	2	0	14	20	0	0	2	0	13					72	
5:50 PM	0	0	16	0	0	13	19	0	0	3	00	6					57	
Count Total	0	0	671	118	0	260	566	0	0	85	0	168					1,868	
Peak Hour	0	0	410	77	0	141	290	0	0	39	0	84					1,041	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles on Crosswalk

Interval		Hea	avy Vehicle	es		Interval		Bicycl	es on Road	dway		Interval	Ped	destrians/l	Bicycles or	Crossw	alk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
4:00 PM	4	1	0		5	4:00 PM	0	0	0		0	4:00 PM	0	0	0		0
4:05 PM	3	0	1		4	4:05 PM	0	0	0		0	4:05 PM	0	0	0		0
4:10 PM	2	0	0		2	4:10 PM	0	0	0		0	4:10 PM	0	0	0		0
4:15 PM	2	0	1		3	4:15 PM	0	0	0		0	4:15 PM	0	0	0		0
4:20 PM	4	0	1		5	4:20 PM	0	0	0		0	4:20 PM	0	0	0		0
4:25 PM	3	0	0		3	4:25 PM	0	0	0		0	4:25 PM	0	0	0		0
4:30 PM	3	1	2		6	4:30 PM	0	0	0		0	4:30 PM	0	0	0		0
4:35 PM	0	0	0		0	4:35 PM	0	0	0		0	4:35 PM	0	0	- 0		0
4:40 PM	0	0	0	100 X T	0	4:40 PM	0	0	. 0	W.	0	4:40 PM	0	2	0		2
4:45 PM	- 1	0	2		3	4:45 PM	0	0	0		. 0	4:45 PM	0	0	0		- 0
4:50 PM	- 1	0	. 3		4	4:50 PM	. 0	0	- 0		0	4:50 PM	0	- 0	0		0
4:55 PM	1	0	2		3	4:55 PM	0	0	0		0	4:55 PM	0	0	0		0
5:00 PM	1	0	1		2	5:00 PM	0	0	0		0	5:00 PM	0	0	0		0
5:05 PM	2	0	1		3	5:05 PM	0	0	0		0	5:05 PM	0	0	0		0
5:10 PM	2	1	1		4	5:10 PM	0	0	0		0	5:10 PM	0	0	0		0
5:15 PM	1	0	0		1	5:15 PM	0	0	0		0	5:15 PM	0	0	0		0
5:20 PM	1	0	2		3	5:20 PM	0	0	1		1	5:20 PM	0	0	0		0
5:25 PM	2	0	1		3	5:25 PM	0	0	0		0	5:25 PM	0	0	0		0
5:30 PM	0	0	1		1	5:30 PM	0	0	0		0	5:30 PM	0	0	0		0
5:35 PM	1	0	3		4	5:35 PM	0	0	0		0	5:35 PM	0	0	0		0
5:40 PM	3	0	2	v.	5	5:40 PM	0	0	0		0	5:40 PM	0	0	0		0
5:45 PM	1	0	1		2	5:45 PM	0	0	0		0	5:45 PM	0	2	0		2
5:50 PM	1	0	3		4	5:50 PM	0	0	0		0	5:50 PM	0	0	0	10	0
Count Total	39	3	28		70	Count Total	0	0	1		1	Count Total	0	4	0		4
Peak Hour	21	1	13		35	Peak Hour	0	0	0		0	Peak Hour	0	2	0		2




Location: Powerline Rd & I-82 NB Ramps PM

Date: Wednesday, March 4, 2020 Peak Hour: 04:45 PM - 05:45 PM

Peak 15-Minutes: 05:05 PM - 05:20 PM

Peak Hour

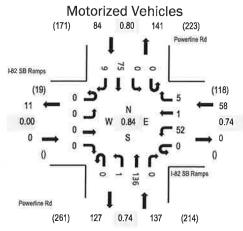
Note: Total study counts contained in parentheses.

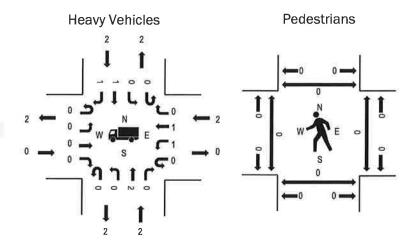
	HV%	PHF
EB	10.7%	0.73
WB	0.0%	0.00
NB	1.9%	0.78
SB	1.7%	0.77
All	2.6%	0.89

Interval		East	B Ramps bound				B Ramps bound				rline Rd nbound				line Rd bound			Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Tum	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
4:00 PM	0	0	0	0	0	0	0	0	0	0	8	0	0	1	11	0	20	285
4:05 PM	0	0	0	0	0	0	0	0	0	0	5	4	0	1	17	0	27	286
4:10 PM	0	1	0	0	0	0	0	0	0	0	6	2	0	0	15	0	24	284
4:15 PM	0	2	0	1	0	0	0	0	0	0	7	7	0	2	14	0	33	288
4:20 PM	0	3	0	0	0	0	0	0	0	0	7	1	0	2	14	0	27	289
4:25 PM	0	0	0	0	0	0	0	0	_ 0	0	5	6	0	0	10	0	21	283
4:30 PM	0	1	0	0	0	0	0	0	0	0	3	4	0	0	11	0	19	284
4:35 PM	0	1	0	1	0	0	0	0	0	0	4	3	0	0	11	0	20	294
4:40 PM	0	3	0	0	0	0	0	0	0	0	4	3	0	0	14	0	24	306
4:45 PM	0	5	0	0	0	0	0	0	0	0	14	1	0	0	10	0	30	308
4:50 PM	0	1	0	1	0	0	0	0	0	0	6	4	0	0	6	0	18	295
4:55 PM	0	1	0	1	0	0	0	0	0	0	7	2	0	0	11	0	22	294
5:00 PM	0	2	0	0	0	0	0	0	0	0	9	2	0	0	8	0	21	
5:05 PM	0	1	0	1	0	0	0	0	0	0	4	4	0	0	15	0	25	11 0 0
5:10 PM	0	1	0	0	0	0	0	0	0	0	12	5	0	2	8	0	28	
5:15 PM	0	2	.0	0	0	0	0	0	0	0	18	4	0	0	10	0	34	
5:20 PM	0	4	0	0	0	0	0	0	0	0	7	1	0	0	9	0	21	10.00
5:25 PM	0	1	0	0	0	0	0	0	0	0	8	1	0	1	11	0	22	
5:30 PM	0	- 1	1	0	0	0	0	0	0	0	12	9	0	0	6	0	29	
5:35 PM	0	2	0	1	0	0	0	0	0	0	9	5	0	1	14	0	32	
5:40 PM	0	1	0	1	0	0	0	0	0	0	9	7	0	0	8	0	26	
5:45 PM	0	1	0	0	0	0	0	0	0	0	6	4	0	0	6	0	17	
5:50 PM	0	1	1	0	0	0	0	0	0	0	6	0	0	0	9	0	17	
Count Total	0	35	2	- 7	0	0	0	0	0	0	176	79	0	10	248	0	557	
Peak Hour	0	22	1	5	0	0	0	0	0	0	115	45	0	4	116	0	308	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles on Crosswalk

Interval		Hea	avy Vehicle	es		Interval		Bicycle	es on Road	dway		Interval	Ped	destrians/E	Bicycles or	Crosswa	ılk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
4:00 PM	0	0	0	0	0	4:00 PM	0	0	0	0	0	4:00 PM	0	0	0	0	0
4:05 PM	0	1	0	1	2	4:05 PM	0	0	0	0	0	4:05 PM	0	0	0	0	0
4:10 PM	0	0	0	0	0	4:10 PM	0	0	0	0	0	4:10 PM	0	0	0	0	0
4:15 PM	1	1	0	0	2	4:15 PM	0	0	0	0	0	4:15 PM	0	0	0	0	0
4:20 PM	0	0	0	1	1	4:20 PM	0	0	0	0	0	4:20 PM	0	0	0	0	0
4:25 PM	0	0	0	0	0	4:25 PM	0	0	0	0	0	4:25 PM	0	0	0	0	0
4:30 PM	0	0	0	0	0	4:30 PM	0	0	0	0	0	4:30 PM	0	0	0	0	0
4:35 PM	0	0	0	0	0	4:35 PM	0	0	0	0	0	4:35 PM	0	0	0	0	0
4:40 PM	0	0	0	0	0	4:40 PM	0	0	0	0	0	4:40 PM	0	0	0	0	0
4:45 PM	1	0	0	0	1	4:45 PM	0	0	0	0	0	4:45 PM	0	0	0	0	0
4:50 PM	0	0	0	0	0	4:50 PM	0	0	0	0	0	4:50 PM	0	0	0	0	0
4:55 PM	0	0	0	0	0	4:55 PM	_ 0	0	0	0	0	4:55 PM	0	0	0	0	0
5:00 PM	0	0	0	0	0	5:00 PM	0	0	0	0	0	5:00 PM	0	0	0	0	0
5:05 PM	1	. 1	0	0	2	5:05 PM	0	0	0	. 0	0	5:05 PM	0	. 0	8	0	. 0
5:10 PM	0		0	1	2	5:10 PM	.0.	0	. 0	0	0	5:10 PM	0	0	0	0	0
5:15 PM	0	0	.0	0	0	5:15 PM	0	0	. 0	0	0	5:15 PM	0	0	0	0	0
5:20 PM	1	0	0	0	1	5:20 PM	0	0	0	0	0	5:20 PM	0	0	0	0	0
5:25 PM	0	0	0	0	0	5:25 PM	0	0	0	0	0	5:25 PM	0	0	0	0	0
5:30 PM	0	0	0	0	0	5:30 PM	0	0	0	0	0	5:30 PM	0	0	0	0	0
5:35 PM	0	0	0	0	0	5:35 PM	0	0	0	0	0	5:35 PM	0	0	0	0	0
5:40 PM	0	= 1	0	1	2	5:40 PM	0	0	0	0	0	5:40 PM	0	0	0	0	0
5:45 PM	0	0	0	0	0	5:45 PM	0	0	0	0	0	5:45 PM	0	0	0	0	0
5:50 PM	0	0	0	0	0	5:50 PM	0	0	0	0	0	5:50 PM	0	0	0	0	0
Count Total	4	5	0	4	13	Count Total	0	0	0	0	0	Count Total	0	0	0	0	0
Peak Hour	3	3	0	2	8	Peak Hour	0	0	0	0	0	Peak Hour	0	0	0	0	0




Location: Powerline Rd & I-82 SB Ramps PM

Date: Wednesday, March 4, 2020 Peak Hour: 04:45 PM - 05:45 PM

Peak 15-Minutes: 05:10 PM - 05:25 PM

Peak Hour

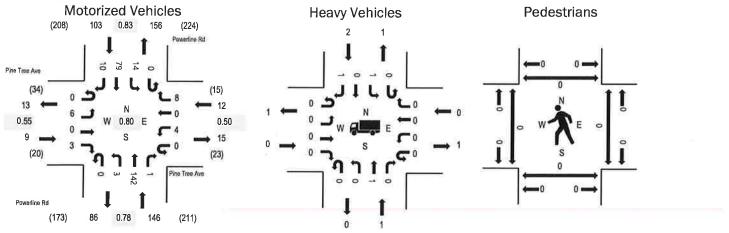
Note: Total study counts contained in parentheses.

	HV%	PHF
EB	0.0%	0.00
WB	3.4%	0.74
NB	1.5%	0.74
SB	2.4%	0.80
All	2.2%	0.84

Interval		Eastl	B Ramps bound				3 Ramps bound				line Rd bound				line Rd bound			Rollin
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
4:00 PM	0	0	0	0	0	7	0	0	0	0	6	0	0	0	5	0	18	262
4:05 PM	0	0	0	0	0	5	0	0	0	0	9	0	0	0	12	1	27	26
4:10 PM	0	0	0	0	0	10	0	0	0	0	6	0	0	0	7	1	24	25
4:15 PM	0	0	0	0	0	5	0	1	0	0	9	0	0	0	9	0	24	25
4:20 PM	0	0	0	0	0	3	0	0	0	0	8	0	0	0	9	3	23	25
4:25 PM	0	0	0	0	0	4	0	1	0	0	7	0	0	0	11	0	23	26
4:30 PM	0	0	0	0	0	6	0	1	0	0	5	0	0	0	7	2	21	26
4:35 PM	0	0	0	0	0	3	0	0	0	0	2	0	0	0	7	0	12	26
4:40 PM	0	0	0	0	0	5	0	2	0	0	7	0	0	0	4	1	19	27
4:45 PM	0	0	0	0	0	6	0	1	0	0	14	0	0	0	10	0	31	27
4:50 PM	0	0	0	0	0	4	0	0	0	0	13	0	0	0	4	2	23	2
4:55 PM	0	0	0	0	0	1	0	0	0	0	10	0	0	0	6	0	17	25
5:00 PM	0	0	0	0	0	3	0	2	0	0	6	0	0	0	7	0	18	
5:05 PM	0	0	0	0	0	7	0	0	0	1	8	0	0	0	5	0	21	
5:10 PM	. 0	0	0	0	0	A	0	- 1	0	0	9	0	0	0.	7	0	21	
5:15 PM	0	0	.0	0	0	6	0	0	0	0	16	0	0	0	6	. 1	29	
5:20 PM	0	0	. 0	0	0	3	0	0	0	. 0	21	0	. 0	0	6	3	33	
5:25 PM	0	0	0	0	0	5	0	1	0	0	6	0	0	0	7	1	20	
5:30 PM	0	0	0	0	0	3	0	0	0	0	11	0	0	0	4	1	19	
5:35 PM	0	0	0	0	0	5	1	0	0	0	12	0	0	0	- 5	1	24	
5:40 PM	0	0	0	0	0	5	0	0	0	0	10	0	0	0	8	0	23	
5:45 PM	0	0	0	0	0	3	0	0	0	0	6	0	0	0	2	0	11	
5:50 PM	0	0	0	0	0	4	0	0	0	0	12	0	0	0	6	0	22	
Count Total	0	0	0	0	0	107	1	10	0	1	213	0	0	0	154	17	503	
Peak Hour	0	0	0	0	0	52	1	5	0	1	136	0	0	0	75	9	279	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles on Crosswalk

Interval		Hea	avy Vehicl	es		Interval		Bicycle	es on Road	dway		Interval	Ped	destrians/E	Bicycles or	Crosswa	lk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
4:00 PM	0	0	0	1	1	4:00 PM	0	0	0	0	0	4:00 PM	0	0	0	0	0
4:05 PM	0	0	0	1	1	4:05 PM	0	0	0	0	0	4:05 PM	0	0	0	0	0
4:10 PM	0	0	0	0	0	4:10 PM	0	0	0	0	0	4:10 PM	0	0	0	0	0
4:15 PM	0	1	0	0	1	4:15 PM	0	0	0	0	0	4:15 PM	0	0	0	0	0
4:20 PM	0	0	1	1	2	4:20 PM	0	0	0	0	0	4:20 PM	0	0	0	0	0
4:25 PM	0	0	0	0	0	4:25 PM	0	0	0	0	0	4:25 PM	0	0	0	0	0
4:30 PM	0	0	1	0	1	4:30 PM	0	0	0	0	0	4:30 PM	0	0	0	0	0
4:35 PM	0	0	0	0	0	4:35 PM	0	0	0	0	0	4:35 PM	0	0	0	0	0
4:40 PM	0	0	0	0	0	4:40 PM	0	0	0	0	0	4:40 PM	0	0	0	0	0
4:45 PM	0	1	0	0	1	4:45 PM	0	0	0	0	0	4:45 PM	0	0	0	0	0
4:50 PM	0	0	0	0	0	4:50 PM	0	0	0	0	0	4:50 PM	0	0	0	0	0
4:55 PM	0	0	0	0	0	4:55 PM	0	0	0	0	0	4:55 PM	0	0	0	0	0
5:00 PM	0	0	0	0	0	5:00 PM	0	0	0	0	0	5:00 PM	0	0	0	0	0
5:05 PM	0	0	0	0	0	5:05 PM	0	0	0	0	0	5:05 PM	0	0	0	0	0
5:10 PM	0	0	0	1		5:10 PM	0	0	0	0	0	5:10 PM	0	0	0	0	0
5:15 PM	0	0	0	0	. 0	5:15 PM	0	0	0	0	0	5:15 PM	0	0	0	0	0
5:20 PM	0	1	0	. 0		5:20 PM	0	0	0	0	.0	5:20 PM	0	0	0	0	0
5:25 PM	0	0	0	1	1	5:25 PM	0	0	0	0	0	5:25 PM	0	0	0	0	0
5:30 PM	0	0	0	0	0	5:30 PM	0	0	0	0	0	5:30 PM	0	0	0	0	0
5:35 PM	0	0	1	0	1	5:35 PM	0	0	0	0	0	5:35 PM	0	0	0	0	0
5:40 PM	0	0	1	0	1	5:40 PM	0	0	0	0	0	5:40 PM	0	0	0	0	0
5:45 PM	0	0	0	0	0	5:45 PM	0	0	0	0	0	5:45 PM	0	0	0	0	0
5:50 PM	0	0	0	0	0	5:50 PM	0	0	0	0	0	5:50 PM	0	0	0	0	0
Count Total	0	3	4	5	12	Count Total	0	0	0	0	0	Count Total	0	0	0	0	0
Peak Hour	0	2	2	2	6	Peak Hour	0	0	0	0	0	Peak Hour	0	0	0	0	0



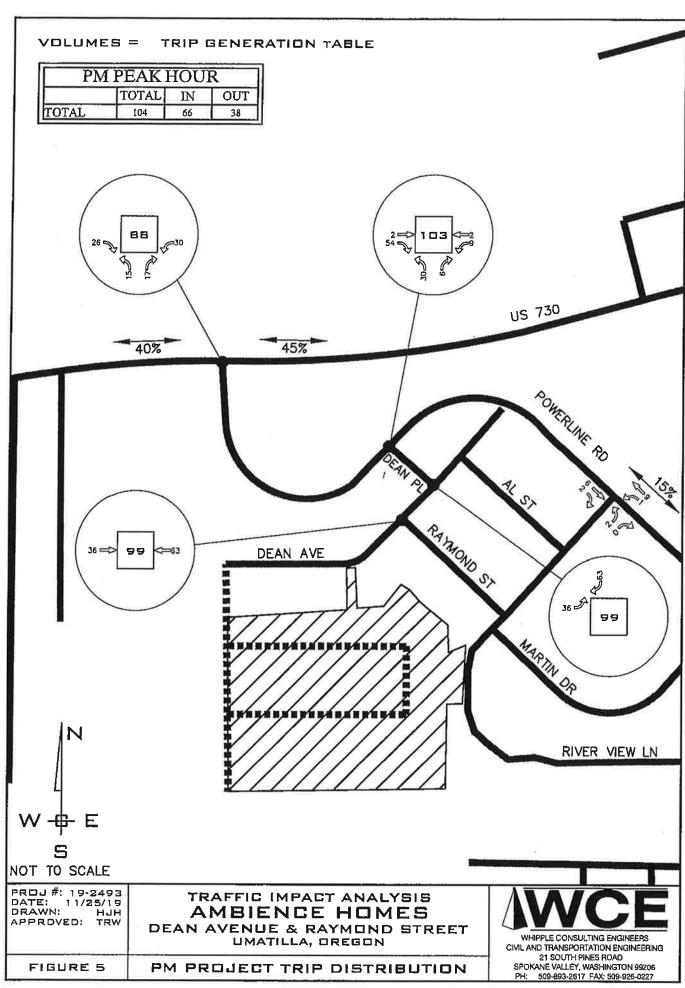
Location: Powerline Rd & Pine Tree Ave PM

Date: Wednesday, March 4, 2020 Peak Hour: 04:45 PM - 05:45 PM

Peak 15-Minutes: 04:45 PM - 05:00 PM

Peak Hour

Note: Total study counts contained in parentheses.


	HV%	PHF
EB	0.0%	0.55
WB	0.0%	0.50
NB	0.7%	0.78
SB	1.9%	0.83
All	1.1%	0.80

Interval		East	ree Ave oound				Free Ave bound				line Rd bound				line Rd abound			Rollin
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hou
4:00 PM	0	0	0	1	0	0	0	1	0	1	6	0	0	1	9	0	19	24
4:05 PM	0	2	0	1	0	0	0	0	0	1	5	0	0	0	8	2	19	24
4:10 PM	0	0	0	1	0	0	0	1	0	0	7	0	0	1	8	1	19	24
4:15 PM	0	0	0	1	0	0	0	0	0	0	10	0	0	2	14	0	27	24
4:20 PM	0	- 1	0	0	0	0	0	1	0	0	7	0	0	1	9	1	20	24
4:25 PM	0	0	0	0	0	0	0	0	0	0	6	0	0	0	9	2	17	24
4:30 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	9	1	13	24
4:35 PM	0	1	0	0	0	0	0	0	0	2	3	0	0	0	5	2	13	25
4:40 PM	0	1	0	0	0	0	0	0	0	1	3	0	0	0	8	1	14	28
4:45 PM	0	0	0	0	. 0	1	.0	-1	0	0	17	- 1	0	2	- 11	4.	34	27
4:50 PM	0	0	0	1	0	1	0	0	0	0	15	0	0	. 1	3	0	21	24
4:55 PM	0	11	0	0	0	0	0	0	0	0	14	0	0	1	13	0	29	23
5:00 PM	0	0	0	0	0	1	0	1	0	0	7	0	0	- 1	4	2	16	
5:05 PM	0	0	0	0	0	0	0	2	0	0	9	0	0	2	6	1	20	
5:10 PM	0	0	0	0	0	1	0	1	0	1	10	0	0	2	9	0	24	
5:15 PM	0	- 1	0	0	0	0	0	0	0	0	12	0	0	1	7	- 1	22	
5:20 PM	0	0	0	1	0	0	0	2	0	2	14	0	0	0	6	0	25	
5:25 PM	0	0	0	0	0	0	0	1	0	0	10	0	0	0	4	0	15	
5:30 PM	0	1	0	1	0	0	0	0	0	0	12	0	0	1	6	3	24	
5:35 PM	0	3	0	0	0	0	0	0	0	0	12	0	0	0	7	2	24	
5:40 PM	0	0	0	0	0	0	0	0	0	0	10	0	0	3	3	0	16	
5:45 PM	0	1	0	0	0	0	0	0	0	1	2	0	0	1	2	3	10	
5:50 PM	0	1	0	0	0	0	0	0	0	0	6	1	0	1	2	2	13	
Count Total	0	13	0	7	0	4	0	11	0	9	200	2	0	21	162	25	454	
Peak Hour	0	6	0	3	0	4	0	8	0	3	142	1	0	14	79	10	270	-

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles on Crosswalk

Interval		Hea	avy Vehicle	es		Interval		Bicycle	es on Road	dway		Interval	Ped	destrians/E	Bicycles or	Crosswa	lk
Start Time	EB	NB	WB	SB	Total	Start Time	EΒ	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
4:00 PM	0	0	0	0	0	4:00 PM	0	0	0	0	0	4:00 PM	0	0	0	0	0
4:05 PM	0	0	0	0	0	4:05 PM	0	0	0	0	0	4:05 PM	0	0	0	0	0
4:10 PM	0	0	0	0	0	4:10 PM	0	0	0	0	0	4:10 PM	0	0	0	0	0
4:15 PM	0	1	0	0	1	4:15 PM	0	0	0	0	0	4:15 PM	0	0	0	0	0
4:20 PM	0	0	0	0	0	4:20 PM	0	0	0	0	0	4:20 PM	0	0	0	0	0
4:25 PM	0	0	0	0	0	4:25 PM	0	0	0	0	0	4:25 PM	0	0	0	0	0
4:30 PM	0	0	0	0	0	4:30 PM	0	0	0	0	0	4:30 PM	0	0	0	0	0
4:35 PM	0	0	0	0	0	4:35 PM	0	0	0	0	0	4:35 PM	0	0	0	0	0
4:40 PM	0	0	0	0	0	4:40 PM	0	0	0	0	0	4:40 PM	0	0	0	0	0
4:45 PM	0	0	0	W. 1	1	4:45 PM	0	0	0	0	0	4:45 PM	0	0	0	0	0
4:50 PM	0	. 0	0	0	0	4:50 PM	0	0	0	0	. 0	4:50 PM	0	0	0	0	0
4:55 PM	0	0	0	0	0	4:55 PM	0	0	0	0	0	4:55 PM	0	0	0	0	0
5:00 PM	0	0	0	1	1	5:00 PM	0	0	0	0	0	5:00 PM	0	0	0	0	0
5:05 PM	0	1	0	0	1	5:05 PM	0	0	0	0	0	5:05 PM	0	0	0	0	0
5:10 PM	0	0	0	0	0	5:10 PM	0	0	0	0	0	5:10 PM	0	0	0	0	0
5:15 PM	0	0	0	0	0	5:15 PM	0	0	0	0	0	5:15 PM	0	0	0	0	0
5:20 PM	0	0	0	0	0	5:20 PM	0	0	0	0	0	5:20 PM	0	0	0	0	0
5:25 PM	0	0	0	0	0	5:25 PM	0	0	0	0	0	5:25 PM	0	0	0	0	0
5:30 PM	0	0	0	0	0	5:30 PM	0	0	0	0	0	5:30 PM	0	0	0	0	0
5:35 PM	0	0	0	0	0	5:35 PM	0	0	0	0	0	5:35 PM	0	0	0	0	0
5:40 PM	0	0	0	0	0	5:40 PM	0	0	0	0	0	5:40 PM	0	0	0	0	0
5:45 PM	0	0	0	0	0	5:45 PM	0	0	0	0	0	5:45 PM	0	0	0	0	0
5:50 PM	0	0	0	0	0	5:50 PM	0	0	0	0	0	5:50 PM	0	0	0	0	0
Count Total	0	2	0	2	4	Count Total	0	0	0	0	0	Count Total	0	0	0	0	0
Peak Hour	0	1	0	2	3	Peak Hour	0	0	00	0	0	Peak Hour	0	0	0	0	0

Appendix B In-Process Projects

Alternative: Alternative 1

Phase:

Project:

Umatilla Resedential Development Master Plan

Open Date: 3/25/2020

Analysis Date: 3/25/2020

	8	Weekday Average Daily Trips	erage Daily	Trips	<	Weekday A Adjacent	eekday AM Peak Hour of Adjacent Street Traffic	our of	_	Weekday PM Peak Hour of Adjacent Street Traffic	eekday PM Peak Hour Adjacent Street Traffic	our of ffic	
ITE Land Use	*	Enter	Exit	Total	*	Enter	Exit	Total	*	Enter	Exit	Total	
210 Vandelay Meadows SF Homes	Ĭ	123	122	245		Οī	14	19		16	10	26	
26 Dwelling Units									3				
Unadjusted Volume		123	122	245		σ	14	19		16	70	26	
Internal Capture Trips		0	0	0		0	0	0		0	0	0	
Pass-By Trips		0	0	0		0	0	0		0	0	0	
Volume Added to Adjacent Streets		123	122	245		ΟΊ	14	19		16	10	26	

Total Weekday Average Daily Trips Internal Capture = 0 Percent

Total Weekday AM Peak Hour of Adjacent Street Traffic Internal Capture = 0 Percent Total Weekday PM Peak Hour of Adjacent Street Traffic Internal Capture = 0 Percent

Custom rate used for selected time period.

Alternative: Alternative 1

Phase:

Project:

Umatilla Resedential Development Master Plan

Open Date: 3/26/2020

Analysis Date: 3/26/2020

	We	Weekday Average Daily Trips	≱rage Daily	Trips	<	Weekday AM Peak Hour of Adjacent Street Traffic	eekday AM Peak Hour Adjacent Street Traffic	our of	_	Weekday PM Peak Hour of Adjacent Street Traffic	eekday PM Peak Hour Adjacent Street Traffic	our of ffic	
ITE Land Use	*	Enter	Exit	Total	*	Enter	Exit	Total	*	Enter	Exit	Total	
210 Cheryl's Place SF Homes		123	122	245		Sī	14	19		16	10	26	
26 Dwelling Units													
Unadjusted Volume		123	122	245		5	14	19		16	1 0	26	
Internal Capture Trips		0	0	0		0	0	0		0	0	0	
Pass-By Trips		0	0	0		0	0	0		0	0	0	
Volume Added to Adjacent Streets		123	122	245		ΟΊ	14	19		16	10	26	
													1

Total Weekday Average Daily Trips Internal Capture = 0 Percent

Total Weekday AM Peak Hour of Adjacent Street Traffic Internal Capture = 0 Percent

Total Weekday PM Peak Hour of Adjacent Street Traffic Internal Capture = 0 Percent

Custom rate used for selected time period.

Appendix C Trip Generation Calculations

Alternative: Alternative 1

Phase:

Project: Umatilla Resedential Development Master Plan

Open Date: 3/25/2020

Analysis Date: 3/25/2020

\$

	Wee	ekday Av	Weekday Average Daily Trips	y Trips	<	Veekday <i>F</i> Adjacent	Weekday AM Peak Hour of Adjacent Street Traffic	our of	_	Weekday PM Peak Hour of Adjacent Street Traffic	eekday PM Peak Hour Adjacent Street Traffic	our of
iTE Land Use	*	Enter	Exit	Total	*	Enter	Exit	Total	*	Enter	Exit	Total
210 Vandelay Meadows SF Homes		232	231	463		9	27	36		3	18	49
49 Dwelling Units												
210 Cheryl's Place SF Homes		491	491	982		19	58	77		65	38 8	103
104 Dwelling Units												
210 Ballard Property SF Homes		1836	1836	3672		72	216	288		243	142	385
389 Dwelling Units												
820 Commercial General		699	698	1397		22	13	35		68	73	141
37 1000 Sq. Ft. GLA												
Unadjusted Volume		3258	3256	6514		122	314	436		407	271	678
Internal Capture Trips		0	0	0		0	0	0		0	0	0
Pass-By Trips		0	0	0		0	0	0		24	24	48
Volume Added to Adjacent Streets		3258	3256	6514		122	314	436		383	247	630

Total Weekday Average Daily Trips Internal Capture = 0 Percent

Total Weekday AM Peak Hour of Adjacent Street Traffic Internal Capture = 0 Percent

Total Weekday PM Peak Hour of Adjacent Street Traffic Internal Capture = 0 Percent

* - Custom rate used for selected time period.

.D __

Umatilla Residential Development

	Umatilla Residential Developm	nent - Total		ADT	Í	PM	
ITE Code	Land Use	Total	Unit	ADT	Enter	Exit	Total
210	Single Family Residential	542	dwelling units	5,116	338	199	537
820	Commercial General	37	1,000 sf	1,397	68	73	141
				6,513	406	272	678

	Umatilla Residential Development	- Total		ľ		PM	
	Land Use	Total	Unit		Enter	Exit	Total
	Vandelay Meadows SF Homes	49	dwelling units		31	18	49
	Cheryl's Place SF Homes	104	dwelling units		65	38	103
2030	Ballard Property	389	dwelling units		243	142	385
	External Trips/Primary Trips				339	198	537
	Commercial General	37	1,000 sf		68	73	141
	Pass-By Trips				-24	-24	-48
	External Trips/Primary Trips				44	49	93
		_	Total Trips Generated		407	271	678
			Pass-By Trips		-24	-24	-48
		301	Primary Trips		383	247	630

Appendix D Level of Service Calculations

Intersection	A		(C) VII	en mus		X
Int Delay, s/veh	3.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	7	in Lot	M	4	110000000000000000000000000000000000000	
Traffic Vol, veh/h	410	77	141	290	39	84
Future Vol, veh/h	410	77	141	290	39	84
Conflicting Peds, #/hr	0	2	2	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None		None
Storage Length	-	-	180	-	0	-
Veh in Median Storage				0	0	
Grade, %	0	_	-	0	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	4	0	0	3	0	1
Mvmt Flow	466	88	160	330	44	95
	Major1		Vlajor2	- "_	Minor1	
Conflicting Flow All	0	0	556	0	1162	512
Stage 1		ā.		-	512	18
Stage 2	150	:=0:		-	650	
Critical Hdwy	0 (40)	(9)	4.1		6.4	6.21
Critical Hdwy Stg 1	300		-		5.4	7,845
Critical Howy Stg 2	100	-	-		5.4	1 10
Follow-up Hdwy	9	ä	2.2	2		3.309
Pot Cap-1 Maneuver	- 1		1025		218	564
Stage 1		÷	ā		606	
Stage 2		a	- 3		523	
Platoon blocked, %	-		12.2.2.2	**	14141111	W10020
Mov Cap-1 Maneuver			1023		184	563
Mov Cap-2 Maneuver			~	#:	314	2.48
Stage 1	- 5	2		•	605	11 (121
Stage 2	-	÷	-		441	·
Approach	EB	لارحالك	WB	7: 1	NB	
HCM Control Delay, s	0		3		16.6	
HCM LOS					С	
Minor Lane/Major Mvm	t N	IBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		450	0.0		1023	341
HCM Lane V/C Ratio		0.311	-	723	0.157	141
HCM Control Delay (s)		16.6		1/4	9.2	- 100
HCM Lane LOS		C		-	Α	15.
HCM 95th %tile Q(veh)	100	1.3	L E	·	0.6	

*												
Intersection				No.	U.815	91	e de la	ASSES OF	S-(*185)	is a lo	=23411	4111
Int Delay, s/veh	1.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	San Land St.		4			4		001	4	UDIT
Traffic Vol, veh/h	6		3	4		8	3	142	- 1	14	79	10
Future Vol, veh/h	6		3	4		8	3	142	1	14	79	10
Conflicting Peds, #/hr	0		0	0		0	0	0	0	0	0	0
Sign Control	Stop		Stop	Stop		Stop	Free	Free	Free	Free	Free	Free
RT Channelized			None	-		None	1100	-	None	-	-	None
Storage Length		300		7*	2 :#1	-		-	-	-	-	-
Veh in Median Storage	# -	0		/13	0		-	0		· ·	0	
Grade, %	_	0	_		0			0		_	0	2
Peak Hour Factor	80	80	80	80	80	80	80	80	80	80	80	80
Heavy Vehicles, %	0	0	0	0	0	0	0	1	0	1	0	1
Mymt Flow	8	0	4	5	0	10	4	178	1	18	99	13
,				-		,,,		.,0		10	00	10
Major/Minor I	Minor2	84	1	Minor1			Major1		- 1- 1	Major2		
Conflicting Flow All	334	329	106	331	335	179	112	0	0	179	0	0
Stage 1	142	142	100	187	187	1/9	112	-	U	1/8	-	U
Stage 2	192	187		144	148				- 4			-
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.1	0.5	- المركا	4.11	-	
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	0.2	4.1	-		4,11		- 50
Critical Hdwy Stg 2	6.1	5.5		6.1	5.5			-	1.5	_	-	-24 - 25
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.2	(#)		2.209	:=:	
Pot Cap-1 Maneuver	623	593	954	626	589	869	1490	-		1403		
Stage 1	866	783	- JUH	819	749	003	1430		Total Control	1403	(#)	
Stage 2	814	749		864	779		1146	32/	1,000	-	1921	
Platoon blocked, %	017	170		007	110			-		-	-	
Mov Cap-1 Maneuver	608	583	954	615	579	869	1490	112		1403		
Mov Cap-2 Maneuver	608	583	-	615	579	000	1730	-		1400	. 3/	-
Stage 1	863	772		817	747			-		The Paris		
Stage 2	802	747	-	849	768			-			- 10.00	
				0-10	, 00	0 111	s, A'e				X.	شد
Approach	EB			WB	3.0	100	NB	170		SB	No.	
HCM Control Delay, s	10.3			9.8	11, 7		0.2	- // -		1	17-	
HCM LOS	В			A			0,2			10.1		
LA DA STATE				X//8/								
Minor Lane/Major Mymt		NBL	NBT	NBR	EBLn1V	/BLn1	SBL	SBT	SBR	10 E		5/2 =
Capacity (veh/h)		1490		-	692	764	1403			V N		
HCM Lane V/C Ratio		0.003			0.016		0.012		-			
HCM Control Delay (s)		7.4	0		1000000	9.8	7.6	0				
HCM Lane LOS		A	A	() + (В	Α	Α.	A				
HCM 95th %tile Q(veh)		0			0.1	0.1	0	-	-			
		v			V. 1	0.1	0	80				

Intersection	-5	Ng 11=	14- 16	VE	1-11-	* 11						
Int Delay, s/veh	0.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4	110000000000000000000000000000000000000		4	
Traffic Vol, veh/h	5			2			3	139	2	6	81	9
Future Vol, veh/h	5						3	139	2	6	81	9
Conflicting Peds, #/hr	0							0	0	0	0	0
Sign Control	Stop						Free	Free	Free	Free	Free	Free
RT Channelized			None				-		None	149		None
Storage Length		_				-		-		T.	_	
Veh in Median Storage	e.# -	0			0			0		-	0	
Grade, %		0			0		-	0		_	0	700
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85
Heavy Vehicles, %	1	1	1	1	1	1	1	1	1	1	1	1
Mymt Flow	6		2	2	0	5	4	164	2	7	95	11
Major/Minor	Minor2			Minor1	B. X	TEL.	Major1		Te.	Major2		27
Conflicting Flow All	291	289	101	289	293	165	106	0	0	166	0	0
Stage 1	115	115		173	173	1	1,5	Ť		100	1	1 1
Stage 2	176	174	-	116	120		-	-			:=:	-
Critical Hdwy	7.11	6.51	6.21	7.11	6.51	6.21	4.11	18 1.		4.11	-	(a)
Critical Hdwy Stg 1	6.11	5.51	-	6.11	5.51	-	_	18	741	345	(4)	
Critical Hdwy Stg 2	6.11	5.51		6.11	5.51			- 0	-		-	
Follow-up Hdwy	3.509	4.009	3.309	3.509	4.009	3.309	2.209	- 2	-	2.209		2
Pot Cap-1 Maneuver	663	623	957	665	620	882	1491	16	- 19	1418		
Stage 1	892	802	-	831	758	-	-	-			-	-
Stage 2	828	757	- 1,13	891	798			- 000			-	
Platoon blocked, %								7 + 3	3.60		±€0	-
Mov Cap-1 Maneuver	656	618	957	659	615	882	1491	-		1418	-	-
Mov Cap-2 Maneuver	656	618	-	659	615	-	-	300	(4)		3 4 0)	-
Stage 1	889	798		829	756		-	191	968	V 1/21	V W	
Stage 2	821	755	-	884	794	-	-	-	-	-	-	-
Approach	EB		-1117	WB			NB		211	SB		
HCM Control Delay, s	10.1		N E	9.6			0.2	100		0.5		
HCM LOS	В			A			J.E.			0.0		
Minor Lane/Major Mvm	t	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR	J. 15	- 11.7	
Capacity (veh/h)	W.	1491			721	793	1418		HO.			10000
HCM Lane V/C Ratio		0.002			0.011		0.005		(2)			
HCM Control Delay (s)		7.4	0		10.1	9.6	7.6	0				
HCM Lane LOS		A	A		В	Α	Α.	A	-			
HCM 95th %tile Q(veh)		0			0	0	0	-				
					U	U	U	- 50	(30)			

Intersection				K W		7	hav 1	10-1	INC.	JI I X	-475	11,5		STITE OF	-21-0
Int Delay, s/veh	0.4														
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR			irs
Lane Configurations		4			4			4			4				
Traffic Vol, veh/h	3		1	1	0	1	2	139	1	2	78	4			
Future Vol, veh/h	3	0	1	1	0	1	2	139	1	2	78	4			
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0			
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free			
RT Channelized			None		(i) -	None		ALLE	None			None			
Storage Length		_			-	-		28	(a		-	-			
Veh in Median Storage	e,# -	0		-	0	-	101/3	0	1	-	0				
Grade, %	-	0	-		0	-		0	-	-	0				25
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85			
Heavy Vehicles, %	1	1	1	1	1	1	1	1	1	1	1	1			
Mvmt Flow	4	0	1	- 1	0	1	2	164	1 1	2	92	5			
Major/Minor	Minor2			Minor1	1×1 W		Major1	W. Er		Vajor2		44.0	1000	1 8 %	N E NI
Conflicting Flow All	268	268	95	268	270	165	97	0	0	165	0	0			
Stage 1	99	99	-	169	169		11/41	11.0		760	- 4				
Stage 2	169	169	-	99	101	-	-	-	-	75	- 2	-			
Critical Hdwy	7.11	6.51	6.21	7.11	6.51	6.21	4.11		× × -	4.11					
Critical Hdwy Stg 1	6.11	5.51	-	6.11	5.51	-	-	-		·					
Critical Hdwy Stg 2	6.11	5.51		6.11	5.51		1,74			-	15.				
Follow-up Hdwy	3.509	4.009	3.309	3.509	4.009	3.309	2.209		-	2.209	*	#			
Pot Cap-1 Maneuver	687	640	964	687	638	882	1503		1 3-	1419	- 2	*			
Stage 1	910	815	-	835	761	-	-	? ₩ 9	140	¥	2	-			
Stage 2	835	761		910	813	1114	75 -	- 18	545		-				
Platoon blocked, %								12	-		2	-			
Mov Cap-1 Maneuver	685	639	964	685	637	882	1503	•	•	1419	÷				
Mov Cap-2 Maneuver	685	639	-	685	637		181	17.	17.4	海	-				
Stage 1	909	814		834	760				i de						
Stage 2	833	760		908	812		:=:	Œ.	30)	ж	*				
The sum of the															- 4
Approach	EB	4,15		WB	ř.		NB	- 25		SB			e	-7/	
HCM Control Delay, s	9.9			9.7		-	0.1			0.2	10.0		***	**	
HCM LOS	Α			Α			520			2.146					
															100
Minor Lane/Major Mvm	t .	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR	- 115					
Capacity (veh/h)		1503			738	771	1419	111					4-11-1-		
HCM Lane V/C Ratio		0.002			0.006			-							
HCM Control Delay (s)		7.4	0		9.9	9.7	7.5	0	V -						
HCM Lane LOS		Α	Α	-	A	Α	Α	A	-						
HCM 95th %tile Q(veh)		0	- Jan	76	0	0	0	121 21	1						

Intersection			100				1	20 - 10	STIN.	Company of	- V.,		
Int Delay, s/veh	2.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	100000
ane Configurations					4			4			1		
Traffic Vol, veh/h	0	0	0	52		5	1	136	0	0	75	9	
uture Vol, veh/h	0	0	0	52	1	5	1	136	0	0	75	9	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	170		None	1		None			None			None	
Storage Length	-	-	-	÷				//=			: 		
/eh in Median Storage,	# -	2			0		- 0.5	0			0	5 - CA	
Grade, %	-	0		*	0	•	-	0	1.01	:•:	0		
eak Hour Factor	84	84	84	84	84	84	84	84	84	84	84	84	
leavy Vehicles, %	0	0	0	2	2	0	0	1	0	0	1	1	
/lymt Flow	0	0	0	62	1	6	1	162	0	0	89	11	
4-1		-13-1	11 9	Mar Sandi				***	- 12				
Major/Minor			N	/linor1			Major1	- 18	N	Najor2		41.2	
Conflicting Flow All				259	264	162	100	0	(5)	170	27.0	0	
Stage 1				164	164	150	0 🛎			J#6			
Stage 2				95	100	\(\frac{1}{2}\)	() = !	1990	(#).	100	*	-	
Critical Howy				6.42	6.52	6.2	4.1	- 8					
Critical Hdwy Stg 1				5.42	5.52	€	345	-	-	* 5	-	-	
Critical Howy Stg 2				5.42	5.52	-		-	-		- *	1 2	
ollow-up Hdwy				3.518	4.018	3.3	2.2	•	-	-	- 8		
ot Cap-1 Maneuver				730	641	888	1505	10	0	0			
Stage 1				865	762	.50		•	0	0		_ ^	
Stage 2				929	812	170	-	351	0	0		- BI	
Platoon blocked, %				700		000	4505	390			*		
lov Cap-1 Maneuver			- Ni - D	729	0	888	1505	1 140	- *	11 (2)	*	14-	
Nov Cap-2 Maneuver				729	0	⊙ = 2	5.5		à	-	_	-	
Stage 1				864	0	-	1 9	- 3	-	0.9	-	-	
Stage 2				929	0	•	J.E.		-i		- 1	di Nu	
pproach	15,11		niv -	WB		# 61	NB	STATE		SB		A - F	
ICM Control Delay, s	4.5		W	10.4	W		0.1	le los		0		L Y	
ICM LOS				В									
				H.								7 - 7	
linor Lane/Major Mvmt	1-x	NBL	NBTW	BLn1	SBT	SBR	Wil				80		
apacity (veh/h)		1505	284	741	(4)	740							
CM Lane V/C Ratio	(0.001	725	0.093	*	*							
ICM Control Delay (s)		7.4	0	10.4		- 6							
CM Lane LOS		Α	Α	В	:::								
CM 95th %tile Q(veh)		0		0.3	150	100							

Intersection	1.83	211	J. S.	170			11.8		-		15,1	10-1		C - 00
Int Delay, s/veh	1									-				
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		1°-x 10-
Lane Configurations		4	8					þ			લી			
Traffic Vol, veh/h	22	1	5	0	0	0	0	115	45	4	116	0		
Future Vol, veh/h	22	1	5	0	0	0	0	115	45	4	116	0		
Conflicting Peds, #/hr	0	0		0	0	0	0	0	0	0	0	0		
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free		
RT Channelized			None		4	None			None			None		
Storage Length	-	-	-	-	-	-	*		-		200	-		
Veh in Median Storage	e.# -	0	-		16979	- 2	12	0	-	-	0	1		
Grade, %	_	0	121	-	0	-	-	0	-	. (4)	0	-		
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89		
Heavy Vehicles, %	7	0	4	0	0	0	0	0	2	1	1	0		
Mymt Flow	25	1	6	0	0	0	0	129	51	4	130	0		
								120	01	- 4	100	U		
Major/Minor	Minor2	10.0		- 7	r Arm	N	/lajor1	10	u vi d	Major2		7	- 118 15 11	1 1 1 N
Conflicting Flow All	293	318	130					0	0	180	0	0		
Stage 1	138	138	No.				10							
Stage 2	155	180	-				126	-	-	-	-	- 4		
Critical Hdwy	6.47	6.5	6.24	-	-					4.11	100	- 1		V
Critical Hdwy Stg 1	5.47	5.5	-						-		.=/			
Critical Howy Stg 2	5.47	5.5								(-)				
Follow-up Hdwy	3.563	4	3.336				-	-		2.209		-		
Pot Cap-1 Maneuver	687	602	914				0	× 2.		1402	/ L	0		
Stage 1	876	786					0			-		0		
Stage 2	861	754	11 4				0		120	-	20	0		
Platoon blocked, %		, ,						_			- 2			
Mov Cap-1 Maneuver	685	0	914						- 8	1402				W
Mov Cap-2 Maneuver	685	0	-				Sign			1102	-	-		
Stage 1	876	0					1					v = 0		
Stage 2	858	0	-				-	- 100	(e):	-		- 8		
Olago E	000		1-3								شد	uė,		
Approach	EB	15 X	F 18.8			, XY	NB		-18	SB				
HCM Control Delay, s	10.2			W TA	1.00		0			0.3				
HCM LOS	В									318				
														- NV
Minor Lane/Major Mvm	it	NBT	NBR E	BLn1	SBL	SBT	"Itil							THE STATE
Capacity (veh/h)	·		N.C.	718	1402									
HCM Lane V/C Ratio		-	5 75	0.044										
HCM Control Delay (s)		*		10.2	7.6	0						S 1 - N		
HCM Lane LOS		-	1000	В	Α	Α								
HCM 95th %tile Q(veh)		2		0.1	0	the state of						77.0		
				200100	¥.									

Intersection		, Miles	- N /	E 14	13 N	2-5
Int Delay, s/veh	6.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ß		*	†	Y	1110011
Traffic Vol, veh/h	500	128	218	354	68	129
Future Vol, veh/h	500	128	218	354	68	129
Conflicting Peds, #/hr	0	2	210	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	1166	None	riee			None
Storage Length			180		0	
Veh in Median Storage		9.00		- 0	-	-
		1 (4)	-	0	0	
Grade, %	0	- 00	- 00	0	0	- 00
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	4	2	2	3	2	2
Mvmt Flow	568	145	248	402	77	147
Major/Minor	Major1		Major2		Minor1	. V.,
Conflicting Flow All	0	0	715	0	1541	643
Stage 1	-			18 .	643	-
Stage 2				*	898	2
Critical Hdwy	1967	111	4.12	= 10	6.42	6.22
Critical Hdwy Stg 1	-		π.12	_	5.42	0,22
Critical Hdwy Stg 2	TANK TANK	-	0.00	-	5.42	- 1
Follow-up Hdwy		1 5	2.218			3.318
	-					
Pot Cap-1 Maneuver	-	-	885		127	473
Stage 1	: ₹0	-	*		523	:(+ :
Stage 2			-		398	ille:
Platoon blocked, %	(4):	*	7200000	12		Veryon
Mov Cap-1 Maneuver	- 4	-	883		91	472
Mov Cap-2 Maneuver	ě	-	-	•	206	(·
Stage 1	1)	11	7		522	
Stage 2	-77		-	-	286	8.78
Approach	EB		WB	0.4	NB	No trans
	Attition					4
HCM Control Delay, s	0		4.1		37.1	
HCM LOS					Е	
2 L						
Minor Lane/Major Mvm	t N	IBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		326	0.02		883	
HCM Lane V/C Ratio		0.687			0.281	
HCM Control Delay (s)		37.1		W.	10.7	
HCM Lane LOS		E			В	
HCM 95th %tile Q(veh)		4.8			1.2	
TOTAL SOUL VOING ON ACTUALLY		4.0	-	- 10-	1.2	

Intersection	Ja P	Vg T ¹ / ₂		77		85-	Jij 20	DA	KII JEG	11.5	- 19.3	1 4 4 4 4	Object State Control
Int Delay, s/veh	1.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	SERVICE SIN
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	7			5	0	10	4	198	1	17	126	12	
Future Vol, veh/h	7	0	4	5	0	10		198	1	17	126	12	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized			None			None			None			None	
Storage Length	-	-		-	-	-	-	¥	2	4	24	: = :	
Veh in Median Storage	e,# -	0	A. 19		0	V .		0	-	-	0	-	
Grade, %	-	0	-		0	-	-	0		-	0	-	
Peak Hour Factor	80	80	80	80	80	80	80	80	80	80	80	80	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	9	0	5	6	0	13	5	248	- 1	21	158	15	
Major/Minor	Minor2		4	Minor1	JIEV, N	y = un	Major1	. 53		Major2		-01.2/	
Conflicting Flow All	473	467	166	469	474	249	173	0	0	249	0	0	
Stage 1	208	208		259	259	-	1	1178	TV I	120	-	240	
Stage 2	265	259	-	210	215				-	-	2	-	
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	- 2		4.12			
Critical Hdwy Stg 1	6.12	5.52		6.12	5.52	-	-		U.			:77.71	
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52		-	18	10				
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218			2.218			
Pot Cap-1 Maneuver	501	493	878	505	489	790	1404		81 J.	1317	(*)	190	
Stage 1	794	730	9	746	694	-	-	()	74	S#3	3 2 3	20	
Stage 2	740	694	-	792	725		-		345		100		
Platoon blocked, %									-		-	-	
Mov Cap-1 Maneuver	485	482	878	494	478	790	1404		- 6	1317	01 3/		
Mov Cap-2 Maneuver	485	482	77	494	478	-	-				170		,,,
Stage 1	791	717		743	691			- 15	7.5	0.18			
Stage 2	725	691	-	773	712	-	-	390			(₩)		
Approach	EB	el Will	0 v s	WB	W. 81		NB	H.Y.,	marchy.	SB	-11/-		
HCM Control Delay, s	11.4		100	10.6		6 -1	0.1	1111		0.9			
HCM LOS	В			В			N753041)			1975-1			
TALL 2 1 1981													
Minor Lane/Major Mvm	t	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR	15		His	والمحملين والمراب
Capacity (veh/h)		1404			579	658	1317	_	11				
HCM Lane V/C Ratio		0.004	-	-	0.024			_	(*)				
HCM Control Delay (s)		7.6	0		11.4	10.6	7.8	0	I II ×				
HCM Lane LOS		A	A		В	В	A	A					
HCM 95th %tile Q(veh)		0			0.1	0.1	0		5.5				
					(MARK)	28.05							

Int Delay, s/veh	Tallow States to	-	gTI s	2.30			Sec. 123	S = 49.	-519	MAN IT			me je	Intersection
Lane Configurations													0.7	int Delay, s/veh
Traffic Vol, veh/h	Yar of the U.S.	SBR	SBT	SBL	NBR	NBT	NBL	WBR	WBT	WBL	EBR	EBT	EBL	Movement
Traffic Vol, veh/h 6 0 2 2 0 5 4 194 2 7 129 11 Fruture Vol, veh/h 6 0 2 2 0 5 4 194 2 7 129 11 Fruture Vol, veh/h 6 0 0 2 2 0 5 4 194 2 7 129 11 Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			4			4			4			43-		Lane Configurations
Future Vol, veh/h 6 0 2 2 0 0 5 4 194 2 7 129 11 Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		11		. 7	2		4	5		2	2		6	Traffic Vol, veh/h
Conflicting Peds, #/hr									0	2	2	0	6	Future Vol, veh/h
Sign Control Stop Stop Stop Stop Stop Stop Stop Stop Stop Free								0	0	0	0	0	0	Conflicting Peds, #/hr
RT Channelized - None -		Free		Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	Sign Control
Storage Length Veh in Median Storage, # - 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0					None									RT Channelized
Grade, % - 0 0 - 0 0 - 0 0 - 0 0 - 0 - 0 - 0 - 0 - 0 - - 0 - 1 0 - - 0 - 0 - - 0 -<			-	-		-	-	-	-		-	-	-	Storage Length
Peak Hour Factor 85 85 85 85 85 85 85 85 85 85 85 85 85		-	0		140	0			0			0	e,# -	Veh in Median Storage
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			0	-	14	0	-	-	0	-	2	0	-	Grade, %
Myrnt Flow 7 0 2 2 0 6 5 228 2 8 152 13 Major/Minor Minor2 Minor1 Major1 Major2 Conflicting Flow All 417 415 159 415 420 229 165 0 0 230 0 0 Stage 1 175 175 - 239 239 -		85	85	85	85	85	85	85	85	85	85	85	85	Peak Hour Factor
Mynth Flow 7 0 2 2 0 6 5 228 2 8 152 13 Major/Minor Minor2 Minor1 Major1 Major2 Conflicting Flow All 417 415 159 415 420 229 165 0 0 230 0 0 Stage 1 175 175 - 239 239 -		2	2	2	2	2	2	2	2	2	2	2	2	Heavy Vehicles, %
Major/Minor Minor2 Minor1 Major1 Major2 Conflicting Flow All 417 415 159 415 420 229 165 0 0 230 0 0 Stage 1 175 175 - 239 239 -					2	228	5	6	0	2	2	0	7	Mvmt Flow
Conflicting Flow All 417 415 159 415 420 229 165 0 0 230 0 0 Stage 1 175 175 - 239 239														
Stage 1 175 175 - 239 239		WI		ajor2	N	e e	Major1	8 1 1		Minor1	, in I		Minor2	Major/Minor I
Stage 2 242 240 - 176 181		0	0	230	0	0	165	229	420	415	159	415	417	Conflicting Flow All
Critical Hdwy 7.12 6.52 6.22 7.12 6.52 6.22 4.12 - 4.12 Critical Hdwy Stg 1 6.12 5.52 - 6.12 5.52		1 5	(2)	1.60		-			239	239		175	175	Stage 1
Critical Hdwy Stg 1 6.12 5.52 - 6.12 5.52		-	1.5	-		-	-		181	176	*	240	242	Stage 2
Critical Hdwy Stg 2 6.12 5.52 - 6.12 5.52		2	1112	4.12	V G	12.	4.12	6.22	6.52	7.12	6.22	6.52	7.12	Critical Hdwy
Follow-up Hdwy 3.518 4.018 3.318 3.518 4.018 3.318 2.218 - 2.218 - 2.218 Pot Cap-1 Maneuver 546 528 886 548 525 810 1413 - 1338 - 1338 Stage 1 827 754 - 764 708		-	-			-	+	_	5.52	6.12	-	5.52	6.12	Critical Hdwy Stg 1
Pot Cap-1 Maneuver 546 528 886 548 525 810 1413 - 1338 - Stage 1 827 754 - 764 708	V 4		- 50	120	119	-	-		5.52	6.12	111	5.52	6.12	Critical Hdwy Stg 2
Stage 1 827 754 - 764 708)	(77.)	2.218		-	2.218	3.318	4.018	3.518	3.318	4.018	3.518	Follow-up Hdwy
Stage 2 762 707 - 826 750 -			*	1338		100	1413	810	525	548	886	528	546	Pot Cap-1 Maneuver
Platoon blocked, % Mov Cap-1 Maneuver 537 522 886 542 519 810 1413 - 1338 - Mov Cap-2 Maneuver 537 522 - 542 519 Stage 1 824 749 - 761 705 Stage 2 753 704 - 818 745 Approach EB WB NB SB HCM Control Delay, s 11.1 10.1 0.2 0.4 HCM LOS B B		-	340	(4 0)		: *:	-	0+0	708	764		754	827	Stage 1
Mov Cap-1 Maneuver 537 522 886 542 519 810 1413 - 1338 - Mov Cap-2 Maneuver 537 522 - 542 519 -		-	180	- 1		7.00		-	750	826		707	762	Stage 2
Mov Cap-2 Maneuver 537 522 - 542 519		2	12.1		-	-								Platoon blocked, %
Mov Cap-2 Maneuver 537 522 - 542 519		-	-	1338			1413	810	519	542	886	522	537	Mov Cap-1 Maneuver
Stage 1 824 749 - 761 705			70			-	-	-	519	542	9	522	537	Mov Cap-2 Maneuver
Stage 2 753 704 - 818 745 -		W-5 W	14	7		-	T .				1 8	749		
Approach EB WB NB SB HCM Control Delay, s 11.1 10.1 0.2 0.4 HCM LOS B B				(#).	(4/)	(*)	-				-			
HCM Control Delay, s 11.1 10.1 0.2 0.4 HCM LOS B B			104						, iii	VI- V				Year Edward
HCM LOS B B		TERE ,	1	SB	EU.		NB	v 1981		WB	ll s	J. 11 %	EB	Approach
HCM LOS B B	(2000		0.4	7,71		0.2	9 1		10.1	4 %		11.1	HCM Control Delay, s
				TROUNT.			200			0,000				
Single Long Marine Mari											- 17			1000/0000
Minor Lane/Major Mymt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR					SBR	SBT	SBL	VBLn1	EBLn1V	NBR	NBT	NBL	t	Minor Lane/Major Mymi
Capacity (veh/h) 1413 596 710 1338					-							1413	21 2	
ICM Lane V/C Ratio 0.003 0.016 0.012 0.006					(*)	-				1.	-			
HCM Control Delay (s) 7.6 0 - 11.1 10.1 7.7 0 -											0			
HCM Lane LOS A A - B B A A -								-	The second second	(i) = (
HCM 95th %tile Q(veh) 0 0 0 0				"				The state of the s		7.00				

Intersection	W			100	47.0-	""×7.		N P -I	IL V		9		The state of the s
Int Delay, s/veh	0.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	4		1	1	0	1	2	194	1	2	125	5	
Future Vol, veh/h	4	0	1	1	0	1	2	194	1	2	125	5	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	4 1		None		BV.	None	-		None	0.		None	
Storage Length		-	-		-		*						
Veh in Median Storage	,# -	0	18.4		0		+:	0			0	· · ·	
Grade, %		0	-	- 4	0		#	0	-	(4)	0	_	
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mymt Flow	5	0	1	1	0	1	2	228	1	2	147	6	
										_			
Major/Minor N	Minor2			Minor1	8 %		Major1			Major2		1 3	
Conflicting Flow All	387	387	150	388	390	229	153	0	0	229	0	0	
Stage 1	154	154	178 -	233	233			-1-	N 100	- 1		-	
Stage 2	233	233	-	155	157	-		_	343	94.5	-	-	
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12		24	4.12	- 4	2	
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52		-	-	447	-	-	2	
Critical Hdwy Stg 2	6.12	5.52	- 11	6.12	5.52	- 4	-		7 25	-		S_ 9	
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218			2.218		=	
Pot Cap-1 Maneuver	572	547	896	571	545	810	1428	- 100		1339			
Stage 1	848	770	_	770	712	-	-	j e 8	(#).	-		-	
Stage 2	770	712	-	847	768	14.3	-	-	*	11		-	
Platoon blocked, %								-	2		-		
Mov Cap-1 Maneuver	570	545	896	569	543	810	1428	12.	1 2	1339	2		
Mov Cap-2 Maneuver	570	545	*	569	543		-		-	#	2	ě	
Stage 1	846	768		768	711			3	1- 5				
Stage 2	767	711		844	766		: - 1		-		-	-	
	a de la composição		10				200						
Approach	EB		X	WB	1 19		NB	2 17	1 1 2	SB			
HCM Control Delay, s	10.9	100		10.4	24	4	0.1			0.1	A ^t te v	I SV. II	
HCM LOS	В			В									
Franks v. v						V = 1							
Minor Lane/Major Mymt	E	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR				
Capacity (veh/h)		1428		0 6	615	668	1339	= =				III IF	
HCM Lane V/C Ratio		0.002	-			0.004		-					
HCM Control Delay (s)		7.5	0		10.9	10.4	7.7	0	-				
HCM Lane LOS		Α	Α	E•3	В	В	Α	Α	-				
HCM 95th %tile Q(veh)		0			0	0	0						

Movement	Intersection			(C) N (C			
Movement		0.4	- 37	4, 3,1	V 12		
Lane Configurations Y Image: Conficting Peds, #/hr Image: Conficting Peds, #/hr				A I PO	A LECON	000	000
Traffic Vol, veh/h				NBL			SBR
Future Vol, veh/h Conflicting Peds, #/hr O O O O O O O O O O O O O O O O O O O							160
Conflicting Peds, #/hr							12
Sign Control Stop Stop Free None Storage Length 0 - - 0<							12
RT Channelized							0
Storage Length 0 -		Stop		Free		Free	Free
Veh in Median Storage, # 0 - - 0 0 Grade, % 0 - - 0 0 Peak Hour Factor 85 85 85 85 85 85 Heavy Vehicles, % 2 3 3 3 <td< td=""><td></td><td></td><td>None</td><td></td><td>None</td><td></td><td>None</td></td<>			None		None		None
Grade, % 0 - - 0 0 Peak Hour Factor 85				0 #	4		4
Peak Hour Factor 85							
Mean							
Mvmt Flow 9 2 5 227 151 14 Major/Minor Minor2 Major1 Major2 Conflicting Flow All 395 158 165 0 - 0 Stage 1 158 -	Act of the last of			85	85	85	85
Major/Minor Minor2 Major1 Major2 Conflicting Flow All 395 158 165 0 - 0 Stage 1 158 -	Heavy Vehicles, %				2	2	2
Conflicting Flow All 395 158 165 0 - 0 Stage 1 158			2	5	227	151	14
Conflicting Flow All 395 158 165 0 - 0 Stage 1 158							
Conflicting Flow All 395 158 165 0 - 0 Stage 1 158	MajorMines	Miner		Majard		Auto-Co.	
Stage 1 158 -							
Stage 2 237 -							0
Critical Hdwy 6.42 6.22 4.12 -	CACAMAN RESIDENCE					100	12
Critical Hdwy Stg 1 5.42				-		74	
Critical Hdwy Stg 2 5.42			6.22	4.12		- (*)	
Follow-up Hdwy 3.518 3.318 2.218			-		0.00		
Pot Cap-1 Maneuver				100		0 10	- 18
Stage 1 871 - - - - Stage 2 802 - - - - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 608 887 1413 - - Mov Cap-2 Maneuver 608 - - - - - Stage 1 868 - - - - - - Stage 2 802 - - - - - - Approach EB NB SB HCM Control Delay, s 10.6 0.2 0 HCM LOS B Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR					(₩)	: - :	-
Stage 2 802 - - - - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 608 887 1413 - - Mov Cap-2 Maneuver 608 - - - - - Stage 1 868 - - - - - - Stage 2 802 - - - - - - Approach EB NB SB HCM Control Delay, s 10.6 0.2 0 HCM LOS B Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR	Pot Cap-1 Maneuver	610	887	1413			*
Stage 2 802 - - - - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 608 887 1413 - - Mov Cap-2 Maneuver 608 - - - - - Stage 1 868 - - - - - - Stage 2 802 - - - - - - Approach EB NB SB HCM Control Delay, s 10.6 0.2 0 HCM LOS B Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR	Stage 1	871	-	-	(4)	848	(a)
Platoon blocked, %		802	1 12	710	(£1		121
Mov Cap-1 Maneuver 608 887 1413 - - Mov Cap-2 Maneuver 608 - - - - - Stage 1 868 - - - - - Stage 2 802 - - - - - Approach EB NB SB HCM Control Delay, s 10.6 0.2 0 HCM LOS B Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR		CONTRACT OF STREET			-	(4)	
Mov Cap-2 Maneuver 608 -		608	887	1413		- 13	40
Stage 1 868 -			A STATE OF THE STA	1100			
Stage 2 802 -			W Q	0.000			2 40
Approach EB NB SB HCM Control Delay, s 10.6 0.2 0 HCM LOS B Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR	· · · · · · · · · · · · · · · · · · ·		3				
HCM Control Delay, s 10.6 0.2 0 HCM LOS B Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR	Olage Z	002		0.70		(-)	
HCM Control Delay, s 10.6 0.2 0 HCM LOS B Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR		- 11					10=1
HCM LOS B Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR	Approach		3.54		84 B/F	SB	
HCM LOS B Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR	HCM Control Delay, s	10.6		0.2		0	
Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR						-	
	1-12-12-12-12-23						
	Minor Lane/Major Myr	nt	NRI	NET	ERI n1	SPT	SPD
Capacity (ven/n) 1413 - 649		ne				201	SDR
HCM Lane V/C Ratio 0.003 - 0.018				Dreve C		980	(40)
)					34 0
						128	(#S)
HCM 95th %tile Q(veh) 0 - 0.1	HCM 95th %tile Q(veh	1)	0	-	0.1		

Intersection	N Sec	J = 11	40.4	K Tr	18 - V	ear yl	
Int Delay, s/veh	0.5						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	W			લ	B		
Traffic Vol, veh/h	8	2	4	183	105	12	
Future Vol, veh/h	8	2	4	183	105	12	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	U S	None	-	6.1		None	
Storage Length	0		_	-		*	
Veh in Median Storage		- 1	1-1	0	0	- 1	
Grade, %	0		_	0	0		
Peak Hour Factor	85	85	85	85	85	85	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	9	2	5	215	124	14	
Control (BACOS)						10100	
Major/Minor	Minor2		Major1		Major2	1 1 Va	
Conflicting Flow All	356	131	138	0	_	0	
Stage 1	131	-	-	-		-	
Stage 2	225	-		-			
Critical Hdwy	6.42	6.22	4.12	Ī	-	V 74	
Critical Hdwy Stg 1	5.42	0.22	-	-	-	V2	
Critical Hdwy Stg 2	5.42			1			
Follow-up Hdwy	3.518		2.218			100	
Pot Cap-1 Maneuver	642	919	1446				
Stage 1	895	-	. 110	*		/ = :	
Stage 2	812		-0.00			-	
Platoon blocked, %	015				18		
Mov Cap-1 Maneuver	639	919	1446		0 1	120	
Mov Cap-2 Maneuver	639	313	1440	_		125	
Stage 1	891	- 2	- 2				
Stage 2	812					(46	
Otago Z	UIZ	W		أحرية			
Approach	EB		NB		SB		
HCM Control Delay, s	10.4		0.2	الساسم	0		
HCM LOS	10.4 B		0.2		U		
ICIVI LUS	В						
Minor Lane/Major Mvm		NBL	NBTE	RI n1	SBT	SBR	
Capacity (veh/h)		1446	INDIE	680		JBN -	
ICM Lane V/C Ratio		0.003		0.017			
ICM Control Delay (s)	701				1.00	1.00	
CM Control Delay (S)		7.5	0	10.4			
		A	Α	В	·*) ;	
-ICM 95th %tile Q(veh)		0		0.1			

Intersection	HX.	1				, F-7	dbs n	8 SH				5, 15,	F)/[-			
Int Delay, s/veh	2.1															_
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	rain in			8.
Lane Configurations					4			લી			ĥ					
Traffic Vol, veh/h	0	0	0	63	1	6	1	184	0	0	98	13				
Future Vol, veh/h	0	0	0	63	1	6	1	184	0	0	98	13				
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0				
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free				
RT Channelized			None			None	15 4		None			None				
Storage Length	-	-	±:	-		*	-		0)41	-		**				
Veh in Median Storage,	# -	2	- 2		0	15 ×		0			0	-				
Grade, %	-	0	141	121	0	2	=	0	951	::	0	121				
Peak Hour Factor	84	84	84	84	84	84	84	84	84	84	84	84				
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2				
Mvmt Flow	0	0	0	75	1	7	1	219	0	0	117	15				
				10				210			1.1.1	10				
Major/Minor		т.,	N	linor1	100	1000	Major1		N	/lajor2		1,X = 1	wis, n	1 - 21	K III.	A I
Conflicting Flow All				346	353	219	132	0		(+1)	(+):	0				
Stage 1		- 31		221	221				100	ie.	-	- 4				
Stage 2				125	132		-	-	-	2 4 8	-					
Critical Hdwy				6.42	6.52	6.22	4.12	0 12	200	2000	No.	0.00				
Critical Hdwy Stg 1				5.42	5.52	-	7.12	-	-	2/	-					
Critical Hdwy Stg 2				5.42	5.52											
Follow-up Hdwy					4.018	3.318	2.218	(-)		250		-				
Pot Cap-1 Maneuver				651	572	821	1453		0	0						
Stage 1				816	720	041	1700		0	0	*	-				
Stage 2				901	787			V. Vaes	0	0	1					
Platoon blocked, %				901	101	- 5	- 5		U	U	- 42					
Mov Cap-1 Maneuver				650	0	821	1453		0 0 29	-	100	9				
Mov Cap-1 Maneuver				650	0	021	1400	-	190							
Stage 1		-		815	0			-	•		2 H 2					
				901	0	1.7	2.5	150	5.6			7.4				
Stage 2				901	U) .	(*)	(#).	*	-	-				
Approach	1.00		8 -5	WB			NB		11 (11)	SB	2 1		A 10 72			
HCM Control Delay, s			I IV	11.2			0			0			Valle III		_	
HCM LOS							U			U	01.0					
HCIWI LOS				В					10.0							
Minor Lane/Major Mvmt	- 74	NBL	NBTW	Bl n1	SBT	SBR	SHILL,		4				4.5	19,3	- 201	
Capacity (veh/h)		1453	2	662	-	-		10				11/2				
HCM Lane V/C Ratio		0.001		0.126	-											
HCM Control Delay (s)	W	7.5		11.2			11									
HCM Lane LOS		A	A	B			1.0									
HCM 95th %tile Q(veh)		0	A .	0.4		- 4				112		-				
TOW COUL MINE (VOII)		U		0.4	F 7	v fi		100			101	100.00				

Intersection	100	12	W. W. B	10.00	01 17		Į.	1151			15	Ser.	100
Int Delay, s/veh	1.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Jy Trus
Lane Configurations		4						f _a			र्स		
Traffic Vol, veh/h	31	1		0	0	0	0	158	55	5	148	0	
Future Vol, veh/h	31	1	6	0	0	0	0	158	55	5	148	0	
Conflicting Peds, #/hr	0	0		0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop		Stop		Stop	Free	Free	Free	Free	Free	Free	
RT Channelized		-		O.Op	Ctop	None	-	1100	None	-	-	None	
Storage Length		-	-		-	-	_		-	-	_	-	
Veh in Median Storage	.# -	0			16979	0		0	1 8111		0	-	
Grade, %	-, "	0	_		0			0		-	0	-	
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89	
leavy Vehicles, %	7	2	4	2	2	2	2	2	2	2	2	2	
Mymt Flow	35	1	7	0	0	0	0	178	62	6	166	0	
WWINE I JOH	00	1 80		U	U	U	U	170	02	0	100	U	
Major/Minor	Minor2					N.	/lajor1	iša ne		Major2	118	V 4 8	N 8 A
Conflicting Flow All	387	418	166				-	0	0	240	0	0	
Stage 1	178	178	-				31.		-	210			
Stage 2	209						_	18	220	100	3.65	883	
Critical Hdwy	6.47	6.52	6.24				16	To the		4.12	267	211	
Critical Hdwy Stg 1	5.47	5.52	0.27					12	345	7.12	-		
Critical Hdwy Stg 2	5.47	5.52							S.				
follow-up Hdwy		4.018	3.336				-	(#)		2.218		- 7	
Pot Cap-1 Maneuver	607	526	873				0	0.011		1327	-	0	
Stage 1	841	752	-				0			1041	100	0	
Stage 2	814	707					0				11 36	0	
Platoon blocked, %	014	101					U	-		- 5	(4)	U	
Mov Cap-1 Maneuver	604	0	873	-				920	-	1327			161 5.8
Mov Cap-1 Maneuver	604	0	0/3		8 5 8	SAIN	- 2		- (1.48)	Manual I	*	- 51	
							1,5	- (-)			7.		
Stage 1	841	0							- 53	121			
Stage 2	810	0	- 5				(4)		-	#Y	- X		
Approach	EB	SUF			-11 %	SU DÎ X	NB			SB			N. WILLIAM
ICM Control Delay, s	11.1			100			0		- 21-	0.3			
ICM LOS	В						U			0.0			
TOWN LOO	U		7,3-										V 1
/linor Lane/Major Mvm	t	NBT	NBR E	BLn1	SBL	SBT	- E =	X TU	To all to		350		
Capacity (veh/h)		0.00		636	1327						W. C.		
ICM Lane V/C Ratio			_\	0.067									
ICM Control Delay (s)			B (11.1	7.7	0		R J		10.8			
ICM Lane LOS		-		В	A	A							
ICM 95th %tile Q(veh)				0.2	0	A							

223 4 2 Free Front None - 11	10 35 10 35 2 2 8e Fre - Non 30 - 10 88 88 2 2 36 400 2 2 3 400	4 134 4 136 0 0 0 e Stop e (0 0 0 0 0 0 0 0 0 38 88 88	9 253 0 253 0 0 Stop None 0 - 1 0 - 1 0 - 2 288 697 - 6.22
223 4 223 4 22 Free Front None - 18	10 35 10 35 2 2 8e Fre - Non 30 - 10 88 88 2 2 36 400 2 2 3 400	Minor1 Minor1	9 253 0 253 0 0 Stop None 0 - 1 0 - 1 0 - 2 288 697 - 6.22
223 4 223 4 22 Free Front None - 18	10 35 10 35 2 2 8e Fre - Non 30 - 10 88 88 2 2 36 400 2 2 3 400	Minor1 Minor1	9 253 0 253 0 0 Stop None 0 - 1 0 - 1 0 - 2 288 697 - 6.22
223 4 2 Free Front None - 18 - 88 2 253 46 Majo 0 82 - 4.1	35 0 35 2 2 2 2 3 0 4 2 2 2 2 2 2	4 134 4 136 0 (e Stope e - (0 0 (0 0 (0 0 2031 - 697 - 1334 - 6.42 - 5.42	253 253 0 253 0 Stop None 1 - 1 - 2 8 88 2 288 697 - 6.22
223 4 2 Free Front None - 18 - 88 2 253 46 Majo 0 82 - 4.1	0 35 2 ee Fre - Non 30 - 9 88 88 2 3 66 403 2 2	4 130 0 (e Stope e - (0 0 (0 0 (0 0 2031 - 697 - 1334 - 6.42 - 5.42	253 0 0 Stop - None 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
2 Free Front None - 18 - 18 - 2 253 46 - Majo 0 82 4.1	2	0 (0 e Stope e - (0 0 (0 0 0 (0 0 0 0 0 0 0 0 0 0 0 0	0 0 Stop None
Free Front None - 18	ee Fre - Non 60 - 168 8 8 8 8 2 2 3 6 40;	e Stope - (0 0 (0 0 (0 0 (0 0 (0 0 (0 0 (0 0 (0	Stop - None - None
None - 18 88 8 2 253 46 Majo 0 82 4.1	- Non 100 - 188 8 81 2 3 6 40 2 2	e (00 (00 (00 (00 (00 (00 (00 (00 (00 (0	- None))) 3 88 2 288 - 697 6.22
- 18	00 - 188 88 22 3 66 402 22 22	- (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	697
88 8 2 2 253 46 Majo 0 82 4.1	2 3 6 402 2 2 2	00 (0 00 (0 00 (0 00 (0 00 (0 00 (0 00 (0 0 0 (0 0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	697
88 8 2 2 253 46 Majo 0 82 4.1	2 3 6 40 2 2 2 2	0 (0 88 88 33 2 148 Minor1 0 2031 - 697 - 1334 - 6.42 - 5.42	697 6.22
88 8 2 253 46 Majo 0 82 - - - 4.1	2 3 6 40;	Minor1	888 2 288 697
2 253 46 Majo 0 82 - - - 4.1	2 3 6 40 2 3 0 2 2	Minor1 20 148 Minor1 20 2031 - 697 - 1334 - 6.42 - 5.42 - 5.42	697
253 46 Majo 0 82 - - 4.1	2 3 - - 2	Minor1 2 231 697 - 1334 - 6.42 - 5.42 - 5.42	697 - 6.22
Majo 0 82 - - - 4.1	2 3 (Minor1 2031 - 697 - 1334 - 6.42 - 5.42 - 5.42	697 - - 6.22
0 82 - - - 4.1	3 (- - 2	2031 - 697 - 1334 - 6.42 - 5.42 - 5.42	697 - - 6.22
0 82 - - - 4.1	3 (- - 2	2031 - 697 - 1334 - 6.42 - 5.42 - 5.42	697 - - 6.22
- - 4.1	- 2 -	- 697 - 1334 - 6.42 - 5.42 - 5.42	6.22
- 4.1 -	2	- 1334 - 6.42 - 5.42 - 5.42	6.22
- 4.1 -	2	- 6.42 - 5.42 - 5.42	6.22
	<u>=</u>	- 5.42 - 5.42	-
in v	2	- 5.42	
0.04			
		_ 3 5 1 9	
- 2.21			
- 80	1	- ~ 63	
ile.	Ħ	494	
		- 246	•
		-	AU22R
- 80	46 10	- ~26	
*	2	- ~ 85	
	0 10	493	
Ē		~ 104	-
W	3	NB	
8.	3	\$ 683.2	
IBLn1 FB	T EBB	WBI	WBT
	-		
12007		5,0	
	الجنتي		+: Comp
	8.3 BLn1 EB 182 2.391 683.2 F 36.2	WB 8.3 BLn1 EBT EBR 182	WB NB 8.3 \$683.2 F BLn1 EBT EBR WBL 182 - 805 2.391 - 0.579 683.2 - 15.4 F - C 36.2 - 3.8

-							- 54					
Intersection			Na Die	13.35	W 2/10	Ç III.,	7 1 5	V- 3	Section 1	F-10-111	11. 1	all X
Int Delay, s/veh	2.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Jan La	4	LDI	MOL	4	VVDIN	NDL	4	MDIA	ODL	4	JOIN
Traffic Vol, veh/h	7		4	11	0	46	4	348	11	76	354	12
Future Vol, veh/h	7		4	11	0	46	4	348	11	76	354	12
Conflicting Peds, #/hr	Ó			0	0	0	0	0	0	0	0	0
Sign Control	Stop			Stop	Stop			Free	Free	Free	Free	Free
RT Channelized			Stop None		Stop	Stop	Free			riee	riee	
Storage Length	-		NONE			None	-	-	None		-	None
Veh in Median Storage	- 44		*	Æ	-			-		-	-	
					0	-	•	0	•	N To	0	
Grade, %	90	0	- 00	- 00	0	-	- 00	0	- 00	- 00	0	-
Peak Hour Factor	80	80	80	80	80	80	80	80	80	80	80	80
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	9	0	5	14	0	58	5	435	14	95	443	15
Major/Minor	Minor2		N W	Minor1	17.7	111	Major1	11 V	III W g	Major2	Tile I	
Conflicting Flow All	1122	1100	451	1095	1100	442	458	0	0	449	0	0
Stage 1	641	641		452	452		0)*(
Stage 2	481	459	100	643	648	-		147.		-	_	-
Critical Hdwy	7.12	6.52	6.22	7,12	6.52	6.22	4.12	107	-	4.12	-	
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5,52	-	40	-	2	-	_	-
Critical Hdwy Stg 2	6.12	5.52		6.12	5.52							
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218		-
Pot Cap-1 Maneuver	183	212	608	191	212	615	1103		- 2	1111		1
Stage 1	463	469	-	587	570	010	1,00	-				-
Stage 2	566	566		462	466							1111
Platoon blocked, %	200	500		102	,00			-	2		2	
Mov Cap-1 Maneuver	151	187	608	172	187	615	1103		- 4	1111	_	
Mov Cap-2 Maneuver	151	187	-	172	187	010	1100	1111111111		1111	- 2	
Stage 1	460	415		583	567		- 40		3			100
Stage 2	510	563	W 150	406	412	-			1	0 8	-	
Olugo Z	510	000		700	716	-(n,					
Approach	EB			WB	110	W.	NB	11.3	100	SB		15 1 1
HCM Control Delay, s	23.5			15.6			0.1	I I SIG		1.5		
HCM LOS	С			C								
Minor Lane/Major Mvm	it	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR	V 7	- 70	
Capacity (veh/h)		1103	_	-	208	411	1111	Second A	-			
HCM Lane V/C Ratio		0.005	-		0.066			N 8	08_			
HCM Control Delay (s)	874 17	8.3	0		23.5	15.6	8.5	0				
HCM Lane LOS		A	A		C C	C	6.5 A	A				
HCM 95th %tile Q(veh	NY OF	0	Α -		0.2	0.6	0.3	Α.	- 2			
LICINI SOUT YOUR METABLE		U			U.Z	0.0	0.3					

Intersection	Tu See	UI SAIL		100	20, 20	DES DE		T 15			1 5,81	0.00	100
Int Delay, s/veh	0.7								-				
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NID)	NBT	NIDD	epi	SBT	SBR	V= 0 10
Lane Configurations	EOL	4	EDIT	VVDL		VVDIX	NBL		NBR	SBL	1000000	SDR	
Traffic Vol, veh/h	6		2	E	4	12	A	247	C	20	4	11	
Future Vol, veh/h	6		2	5	0	12	4	347 347	6	20	350 350	11	
Conflicting Peds, #/hr	0		0		0	0	0	0	0	0	330	0	
Sign Control	Stop		Stop			Stop	Free	Free	Free	Free	Free		
RT Channelized	Stop		None	Stop	Stop	None	riee	riee	None	-	riee	Free	
Storage Length			NOTE:			140116	-	40	INUITE -			NONE	
Veh in Median Storage	.# -	0	_		0	_		0			0		
Grade, %	ν, π.	0	200		0			0		-	0	-	
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mymt Flow	7		2	6	0	14	5	408	7	24	412	13	
MANUELION		U		U	U	14	J	400		24	412	13	
Nation III Allega	Marco			I the section	721 - 2	V	N in Sound			18 S			
	Minor2	605		Minor1	964 No.75		Major1			Major2	12 1	T at	THE R. P.
Conflicting Flow All	896	892	419	890	895	412	425	0	0	415	0	0	
Stage 1	467	467	100	422	422	-	C. U.S.	-		- S	-	-	
Stage 2	429	425	0.00	468	473	- 0.00	-	-	-	4.40	2	-	
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	9		4.12			
Critical Hdwy Stg 1	6.12	5.52		6.12	5.52				3.55				
Critical Hdwy Stg 2	6.12	5.52	0.040	6.12	5.52	0.040	0.040		100	0.040	-	- 4	
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218			2.218	-		
Pot Cap-1 Maneuver	261	281	634	264	280	640	1134		-	1144	- *		
Stage 1	576	562	*	609	588	_			(*)	-	=	-	
Stage 2	604	586	•	575	558	700 T	11.00				-		
Platoon blocked, % Mov Cap-1 Maneuver	240	274	634	250	270	640	4404			1114	-		
Mov Cap-1 Maneuver	249	271		256	270	640	1134	1960	*	1144		-	
Stage 1	249 573	271 546	-	256 605	270 584	_		:*:	188	-	. 	- v i	
Stage 2	587	582		557	542		0.000		250		•	*	
Glaye Z	307	302		007	042		-	:*):	*		. (8)		
A Server and Company			A								= 101		
Approach	EB			WB		The same	NB	100	100	SB	13.		
HCM Control Delay, s	17.6			13.5	44.7		0.1			0.4			
HCM LOS	С			В									
								W. C.					
Minor Lane/Major Mvm	t	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR				1000
Capacity (veh/h)		1134	7.		294	444	1144	6 J.V					
HCM Lane V/C Ratio		0.004		/\ ≠ :	0.032	0.045	0.021						
HCM Control Delay (s)		8.2	0	100	17.6	13.5	8.2	0					
HCM Lane LOS		Α	Α		C	В	Α	Α					
HCM 95th %tile Q(veh)		0		70	0.1	0.1	0.1	10	- 20				

Intersection	OR THE	10	100	200 E1			der Se	TI SAL	5 N	g lis	K B.	
Int Delay, s/veh	3.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	62			10		27	29	267	16	47	256	53
Future Vol, veh/h	62			10			29	267	16	47	256	53
Conflicting Peds, #/hr	0			0			0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized		H.	None			None	1,11	A.	None	15		None
Storage Length		_	_		-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0			0		-	0	- 1		0	4
Grade, %	-	0	-	-	0	-	-	0		-	0	-
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	73	0	25	12	0	32	34	314	19	55	301	62
Major/Minor	Minor2	1		Minor1		201 (1)	Major1			Major2	A Juli	W 18.
Conflicting Flow All	850	843	332	847	865	324	363	0	0	333	0	0
Stage 1	442	442		392	392		(4	-	186	= 20	- 8	
Stage 2	408	401	-	455	473	2	-	-	-		-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12			4.12	- 20	- 2
Critical Hdwy Stg 1	6.12	5.52		6.12	5.52			36			-	+
Critical Hdwy Stg 2	6.12	5.52		6.12	5.52		V 130					
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	87	-	2.218	:=:	
Pot Cap-1 Maneuver	280	300	710	282	292	717	1196	-		1226		
Stage 1	594	576	71 <u>-</u>	633	606	_	-	:) .	140	(#)	-
Stage 2	620	601	-	585	558		= -	100	140	11,120	127	-
Platoon blocked, %								121	-		527	-
Mov Cap-1 Maneuver	249	273	710	254	266	717	1196			1226	- BY	
Mov Cap-2 Maneuver	249	273		254	266		-	·		100	-	
Stage 1	573	543		611	585		. 8 .	11		(2)		
Stage 2	572	580	-	532	526	-	-	(m)	(16)	(+)	*	
Approach	EB	y 14	V 8	WB	18.15	V 1, 10	NB	W. V.		SB		W.
HCM Control Delay, s	22.9			13.2			0.8		×	1.1		
HCM LOS	С			В								
Minor Lane/Major Mvm	it	NBL	NBT	NBR	EBLn1V		SBL	SBT	SBR	le,, è		
Capacity (veh/h)		1196	-	10	298	480	1226		1 30			
HCM Lane V/C Ratio		0.029	-	, in	0.328		0.045	-	(#7)			
HCM Control Delay (s)		8.1	0		22.9	13.2	8.1	0	- 3			
HCM Lane LOS		Α	Α	(4:	C	В	Α	Α	(4)			
HCM 95th %tile Q(veh))	0.1		14	1.4	0.3	0.1	14	- 1 and			
			2									

Intersection	Winter	ne tyre si	1	W an	37.50	k to
Int Delay, s/veh	0.6					
to to the same of			1101	1/07		-
Movement	EBL		NBL		SBT	SBR
Lane Configurations	¥γ		WELL	લ	B	1
Traffic Vol, veh/h	17			299	272	28
Future Vol, veh/h	17			299	272	28
Conflicting Peds, #/hr			370	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None		None
Storage Length	0					
Veh in Median Storage	e,# 0	- /-	1	0	0	
Grade, %	0	: #:	(4)	0	0	-
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, %	2			2	2	2
Mymt Flow	20	7		352	320	33
			14.791			
VIEW WILLIAM	a at they					
	Minor2		Major1		Major2	
Conflicting Flow All	717	337	353	0	-	0
Stage 1	337			10	1.9	
Stage 2	380	-		-	-	
Critical Hdwy	6.42	6.22	4.12	-	-	
Critical Hdwy Stg 1	5.42	-	123	2	2	2
Critical Hdwy Stg 2	5.42	120	1 2	0 1 8	¥	
Follow-up Hdwy	3.518	3.318	2.218		-	
Pot Cap-1 Maneuver	396	705	1206			
Stage 1	723		-		-	-
Stage 2	691		7			- 1
Platoon blocked, %	30.1				¥	
Mov Cap-1 Maneuver	390	705	1206	0 7 2		
Mov Cap-2 Maneuver	390	,00	1200		N E	
Stage 1	713		-	- 1		
	691					
Stage 2	091	-			5	1.5
W = W						
Approach	EB		NB	77	SB	
HCM Control Delay, s	13.7	44,1	0.3		0	T. I A
HCM LOS	В		405			
MINERAL PROPERTY.	0.00					
A Mary of Display of Assessment		E PORT	1/8/6/2000 100	MAL	ALC: N	
Minor Lane/Major Mvm	IT.	NBL	NBTE		SBT	SBR
Capacity (veh/h)		1206		441		280
HCM Lane V/C Ratio		0.012	-	0.061		
HCM Control Delay (s)		8	0	13.7	1,5	:::
HCM Lane LOS		Α	Α	В). • :	:+:
HCM 95th %tile Q(veh)	1 8	0		0.2	:•	
				111111111111111111111111111111111111111		

Intersection					1	- 11,
Int Delay, s/veh	1.9		- N			
The state of the s			Mor	Minim	COL	007
Movement	WBL	WBR		NBR	SBL	SBT
Lane Configurations	Y		\$	20	or.	4
Traffic Vol, veh/h	17	38	273	32		212
Future Vol, veh/h	17	38	273	32		212
Conflicting Peds, #/hr		0	0	_ 0		_ 0
Sign Control	Stop	Stop	Free	Free		Free
RT Channelized	-		•	None		None
Storage Length	0	-	-			-
Veh'in Median Storage		100	0			0
Grade, %	0	-	0	- 05		0
Peak Hour Factor	85	85	85	85		85
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	20	45	321	38	76	249
Major/Minor	Minor1		Vajor1		Major2	
Conflicting Flow All	741	340	0	0	359	0
Stage 1	340	-	I V		-	U.S.
Stage 2	401		-	-		
Critical Hdwy	6.42	6.22		-	4.12	-
Critical Hdwy Stg 1	5.42	0.22		-	1, 12	2
Critical Hdwy Stg 2	5.42			ev Ave		
Follow-up Hdwy	3.518			9	2.218	
Pot Cap-1 Maneuver	384	702		5	1200	
Stage 1	721	102	A		1200	
Stage 2	676	-		-	The Latest	1. 1
Platoon blocked, %	010		2.	- B		372
Mov Cap-1 Maneuver	356	702		•	1200	-
Mov Cap-1 Maneuver	356	702			1200	-
Stage 1	721		-			
	626	-	- 4	1 1	*	
Stage 2	020					•
Approach	WB		NB		SB	
HCM Control Delay, s	12.6	THAT	0	1 N	1.9	6
HCM LOS	В					
يتاسا بالستابات			4.15	416.5		
Minor Lane/Major Mary		NOT	VICTORY	ID1 -4	CDI	CDT
Minor Lane/Major Mvm	14	NBT	NBRW		SBL	SBT
Capacity (veh/h)		•	146	540	1200	-
HCM Cantral Dalama		*	/ <u>e</u>		0.064	-
HCM Control Delay (s)				12.6	8.2	0
-ICM Lane LOS		1.52	: •	В	A	Α
HCM 95th %tile Q(veh)		1 37	LAME	0.4	0.2	(#)

Intersection	200	Y 4				
Int Delay, s/veh	1.4					5
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	SHOWING		લ	B	and residents.
Traffic Vol, veh/h	36	12	20	263	156	61
Future Vol, veh/h	36	12	20	263	156	61
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop		Free	Free	Free
RT Channelized		None	0 2	OP	1100	None
Storage Length	0	-	-	-		-
Veh in Median Storage			- 1	0	0	
Grade, %	0	3.0		0	0	
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	42	14	24	309	184	72
	76	14	47	505	104	12
			TOTAL SILVER			
	Minor2		Major1		Major2	
Conflicting Flow All	577	220	256	0	-	0
Stage 1	220			-	\ \ \	0 -
Stage 2	357	(#)			×	×
Critical Hdwy	6.42	6.22	4.12	73.	× -	-
Critical Hdwy Stg 1	5.42	-	3 4	<u> </u>	¥	21
Critical Hdwy Stg 2	5.42	-	1,12	- 2	100	
Follow-up Hdwy	3.518	3.318	2.218	2	¥	¥.
Pot Cap-1 Maneuver	478	820	1309			
Stage 1	817		-	-	-	
Stage 2	708		-	V . VV		
Platoon blocked, %				-	+	0(# E
Mov Cap-1 Maneuver	467	820	1309	181	- 27 *	100
Mov Cap-2 Maneuver	467	-	-	¥	-	841
Stage 1	799					00.20
Stage 2	708	- 1	-			
Stage 2	700					255
		0 0 1				
Approach	EB		NB		SB	11.0
HCM Control Delay, s	12.7		0.6		0	
HCM LOS	В					
Ainer Lang/Major Mumi	8	NIDI	NOTE	DI 64	COT	epn
Minor Lane/Major Mvmt		NBL	NBTE		SBT	SBR
Capacity (veh/h)		1309		523	-	
HCM Lane V/C Ratio		0.018	The second second second	0.108	•	•
10110-1-15		7.8	0	12.7	-	
HCM Control Delay (s)						
HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)		A 0.1	A	B 0.4		

Intersection		77 V =	2 11 1		řine:		"X " =	T 2 T	Self-Self-		0.00	
Int Delay, s/veh	1.8				V							
	EBL	COT	CDD	WDI	MOT	WDD	MDI	KIDT	NIDD	CDI	COT	CDD
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	^	00	4	•		4			1	00
Traffic Vol, veh/h	0	0	0	63	1	6	1	280	0	0	146	26
Future Vol, veh/h	0	0	0	63	1	6	1	280	0	0	146	26
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	_ 0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized			None	- 1	10.00	None		17.12	None	•	•	None
Storage Length	.u.	-	1,50	•	-		-	-	(-)	/=0	-	##.V
Veh in Median Storage,		2		0.5	0			0	700	*	0	1
Grade, %	0.4	0	0.4	64	0		- 04	0	-	-	0	- 04
Peak Hour Factor	84	84	84	84	84	84	84	84	84	84	84	84
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	75	- 1	7	1	333	0	0	174	31
Major/Minor			N	linor1	. T°		Major1		N	/lajor2	V, j. E.	18
Conflicting Flow All				525	540	333	205	0		1.53		0
Stage 1				335	335	-				Λ.,	391	
Stage 2				190	205	-	-	K#E		<u>1₩0</u>	-	
Critical Howy				6.42	6.52	6.22	4.12	-	1983	-	21	
Critical Hdwy Stg 1				5.42	5.52	-	-			2	6	2
Critical Hdwy Stg 2	100		1	5.42	5.52	.0 15	-	-		- 5	- 4	
Follow-up Hdwy				3.518	4.018	3.318	2.218		-	-	-	ě
Pot Cap-1 Maneuver				513	449	709	1366		0	0	- 17	
Stage 1				725	643	-	-	J	0	0	-	
Stage 2				842	732			18	0	0	-	
Platoon blocked, %									- 2		<u>~</u>	*
Mov Cap-1 Maneuver				512	0	709	1366			W &	17.2	
Mov Cap-2 Maneuver				512	0	TARDICON.	245		440		2	*
Stage 1			77,3	724	0		18		100			-
Stage 2				842	0	-	-		17/			** <u>.</u>
Annranch		-		IAID			MO			en.		
Approach				WB	W 1,1		NB			SB	11-21-11	
HCM Control Delay, s				13.1			0			0		
HCM LOS				В								
			VI 0	-							181 3	
Minor Lane/Major Mvmt		NBL	NBTW	BLn1	SBT	SBR			تارية		7	
Capacity (veh/h)		1366	7	525	-	10.0				0-0-		
HCM Lane V/C Ratio		0.001	- (0.159								
HCM Control Delay (s)		7.6		13.1				VIII T		100		
HCM Lane LOS		Α	Α	В		-						
HCM 95th %tile Q(veh)		0		0.6		· ·						
		100		200								

Intersection	e ri Awa	1,317				100	OIM_M		The same	W.			
Int Delay, s/veh	1.4												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	118110
Lane Configurations		4						B			લ		
Traffic Vol, veh/h	50	1	6	0	0	0	0	235	55	5	196	0	
Future Vol, veh/h	50	1	6	0	0	0	0	235	55	5	196	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized			None			None	1 = 4	1 7	None	-	7.8	None	
Storage Length	-	-	-	-	¥	iii	4		Table Week			_	
Veh in Median Storage	.# -	0	-	111	16979		1 2	0	11 24		0	1020	
Grade, %		0	-		0	-	-	0			0	-	
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89	
Heavy Vehicles, %	7	2	4	2	2	2	2	2	2	2	2	2	
Mymt Flow	56	1	7	0	0	0	0	264	62	6	220	0	
		•							-				
Major/Minor I	Minor2	8.50	-75	V	al e la		/lajor1			Major2		1	
Conflicting Flow All	527	558	220				24	0	0	326	0	0	
Stage 1	232	232					7/5	-	-	-	<u>,</u>		
Stage 2	295	326	-							- 30	MODEL WEST	-	
Critical Hdwy	6.47	6.52	6.24							4.12	-		
Critical Hdwy Stg 1	5.47	5.52	0.67									-	
Critical Hdwy Stg 2	5.47	5.52								-			
Follow-up Hdwy	3.563	4.018	3.336					-	940	2.218		-	
Pot Cap-1 Maneuver	503	438	815				0	-	-	1234		0	
Stage 1	795	713	010				0		121	1204	2	0	
Stage 2	744	648					0					0	
Platoon blocked, %	137	UTU					U	-	- 21			U	
Nov Cap-1 Maneuver	500	0	815				V 01		7.	1234		EV.	
Mov Cap-2 Maneuver	500	0	010					- 184	- 3	12.04	- 0		
Stage 1	795	0	٠.									- 1	
Stage 2	740	0					-	1860			-		
Glaye Z	740	U					K W	:=\	3 15	100			
Approach	EB		-	A	11/2/2		NB			SB	_		
CM Control Delay, s	12.9				W		0			0.2		W E	
CM LOS	В						U			0.2			
ICIVI EOS	D			100									
//inor Lane/Major Mvm		NBT	NBR E	BI n1	SBL	SBT							1 12-1-1
Capacity (veh/h)			THE REAL PROPERTY.	522	1234	-							
ICM Lane V/C Ratio		(*)		0.123		-							
ICM Control Delay (s)		(6)		12.9	7.9	0							
ICM Lane LOS		74	924	B	Α	A							
ICM 95th %tile Q(veh)				0.4	0	A .							

Appendix E Preliminary Traffic Signal Warrant

Oregon Department of Transportation

Transportation Development Branch

Transportation Planning Analysis Unit

	Dualinein a	Trace Cia Ci		4 4 - 1 - 1	
Maine Charach		ry Traine Si	gnal Warran		1
	Highway 730	1.1D 1		Powerline Roa	
Project:		ential Developn	City/County:		la
Year:	2030		Alternative:	0	
		ninary Signa	l Warrant Vo	olumes	
Nun	nber of	ADT on n	najor street	ADT on mino	r street, highest
Appro	ach lanes	approacl	ning from	appro	aching
		both di	rections	vol	ume
Major	Minor	Percent of stan	dard warrants	Percent of stan	dard warrants
Street	Street	100	70	100	70
	Case	A: Minimum	Vehicular T	raffic	
1	1	8850	6200	2650	1850
2 or more	1	10600	7400	2650	1850
2 or more	2 or more	10600	7400	3550	2500
1	2 or more	8850	6200	3550	2500
	Case B:]	Interruption	of Continuou	ıs Traffic	
1	1	13300	9300	1350	950
2 or more	1	15900	11100	1350	950
2 or more	2 or more	15900	11100	1750	1250
1	2 or more	13300	9300	1750	1250
X	100 percent of	standard warran	ts		
	70 percent of	standard warran	ts ²		
			Warrant Cal	culation	
	Street	Number of	Warrant	Approach	Warrant Met
		Lanes	Volumes	Volumes	
Case	Major	2 or more	10600	13183	NI
Α	Minor	1	2650	2176	11
Case	Major	2 or more	15900	13183	NT
В	Minor	1	1350	2176	
Analyst and Da	ate:		Reviewer and I	Date:	

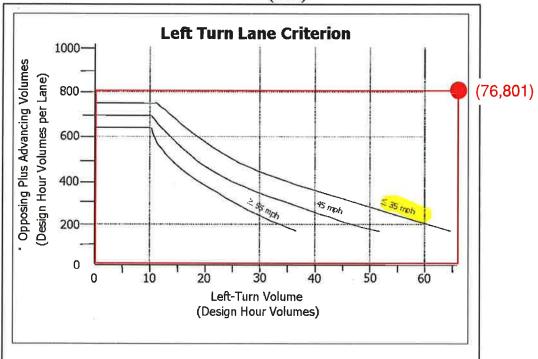
¹ Meeting preliminary signal warrants does **not** guarantee that a signal will be installed. When preliminary signal warrants are met, project analysts need to coordinate with Region Traffic to initiate the traffic signal engineering investigation as outlined in the Traffic Manual. Before a signal can be installed, the engineering investigation must be conducted or reviewed by the Region Traffic Manager who will forward signal recommendations to headquarters. Traffic signal warrants must be met and the State Traffic Engineer's approval obtained before a traffic signal can be installed on a state highway.

Analysis Procedures Manual

² Used due to 85th percentile speed in excess of 40 mph or isolated community with population of less than 10,000.

Appendix F Left- and Right-Turn Analysis


2030 With Project Conditions at Powerline Road / Pine Tree Avenue (Southbound Left-Turn Lane)


Left Turn Lane Evaluation Process

- A left turn lane should be installed, if criterion 1 (Volume) or 2 (Crash) or 3 (Special Cases) are met, unless a subsequent evaluation eliminate it as an option; and
- The Region Traffic Engineer must approve all proposed left turn lanes on state highways, regardless of funding source; and
- · Left turn lane complies with Access Management Spacing Standards; and
- Left turn lane conforms to applicable local, regional and state plans.

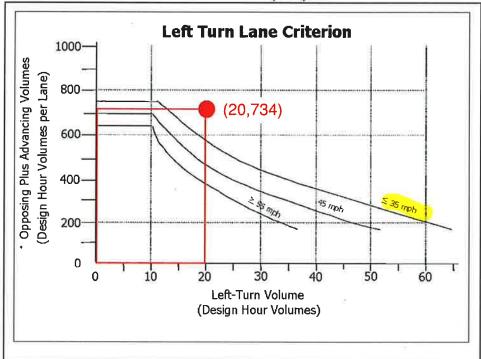
Criterion 1: Vehicular Volume

The vehicular volume criterion is intended for application where the volume of intersecting traffic is the principal reason for considering installation of a left turn lane. The volume criterion is determined by the Texas Transportation Institute (TTI) curves in Exhibit 12-1.

^{*(}Advancing Volume/Number of Advancing Through Lanes) + (Opposing Volume/Number of Opposing Through Lanes)

Opposing left turns are not counted as opposing volumes

2030 With Project Conditions at Powerline Road / Sparrow Avenue (Southbound Left-Turn Lane)


Left Turn Lane Evaluation Process

- A left turn lane should be installed, if criterion 1 (Volume) or 2 (Crash) or 3 (Special Cases) are met, unless a subsequent evaluation eliminate it as an option; and
- The Region Traffic Engineer must approve all proposed left turn lanes on state highways, regardless of funding source; and
- Left turn lane complies with Access Management Spacing Standards; and
- Left turn lane conforms to applicable local, regional and state plans.

Criterion 1: Vehicular Volume

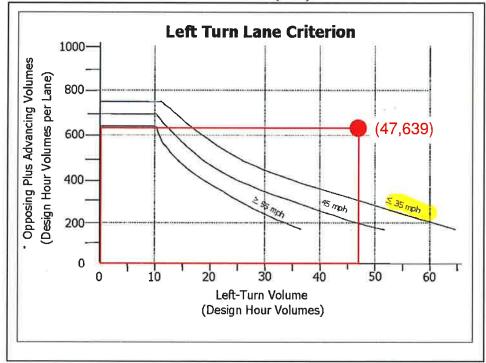
The vehicular volume criterion is intended for application where the volume of intersecting traffic is the principal reason for considering installation of a left turn lane. The volume criterion is determined by the Texas Transportation Institute (TTI) curves in Exhibit 12-1.

Exhibit 12-1 Left Turn Lane Criterion (TTI)

^{*(}Advancing Volume/Number of Advancing Through Lanes) + (Opposing Volume/Number of Opposing Through Lanes)

Opposing left turns are not counted as opposing volumes

2030 With Project Conditions at Powerline Road / Eagle Avenue (Southbound Left-Turn Lane)


Left Turn Lane Evaluation Process

- A left turn lane should be installed, if criterion 1 (Volume) or 2 (Crash) or 3 (Special Cases) are met, unless a subsequent evaluation eliminate it as an option; and
- The Region Traffic Engineer must approve all proposed left turn lanes on state highways, regardless of funding source; and
- Left turn lane complies with Access Management Spacing Standards; and
- Left turn lane conforms to applicable local, regional and state plans.

Criterion 1: Vehicular Volume

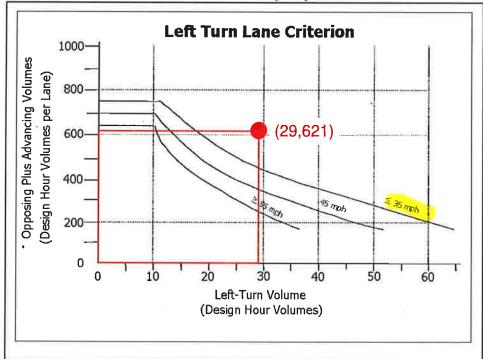
The vehicular volume criterion is intended for application where the volume of intersecting traffic is the principal reason for considering installation of a left turn lane. The volume criterion is determined by the Texas Transportation Institute (TTI) curves in Exhibit 12-1.

^{*(}Advancing Volume/Number of Advancing Through Lanes) + (Opposing Volume/Number of Opposing Through Lanes)

Opposing left turns are not counted as opposing volumes

2030 With Project Conditions at Powerline Road / Eagle Avenue

(Northbound Left-Turn Lane)


Left Turn Lane Evaluation Process

- A left turn lane should be installed, if criterion 1 (Volume) or 2 (Crash) or 3 (Special Cases) are met, unless a subsequent evaluation eliminate it as an option; and
- The Region Traffic Engineer must approve all proposed left turn lanes on state highways, regardless of funding source; and
- Left turn lane complies with Access Management Spacing Standards; and
- Left turn lane conforms to applicable local, regional and state plans.

Criterion 1: Vehicular Volume

The vehicular volume criterion is intended for application where the volume of intersecting traffic is the principal reason for considering installation of a left turn lane. The volume criterion is determined by the Texas Transportation Institute (TTI) curves in Exhibit 12-1.

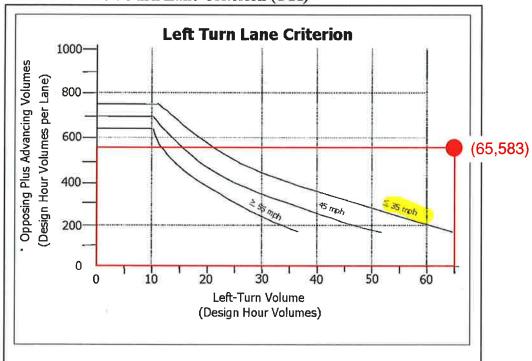
Exhibit 12-1 Left Turn Lane Criterion (TTI)

^{*(}Advancing Volume/Number of Advancing Through Lanes) + (Opposing Volume/Number of Opposing Through Lanes)

Opposing left turns are not counted as opposing volumes

2030 With Project Conditions at Powerline Road / Street At Ballard Property

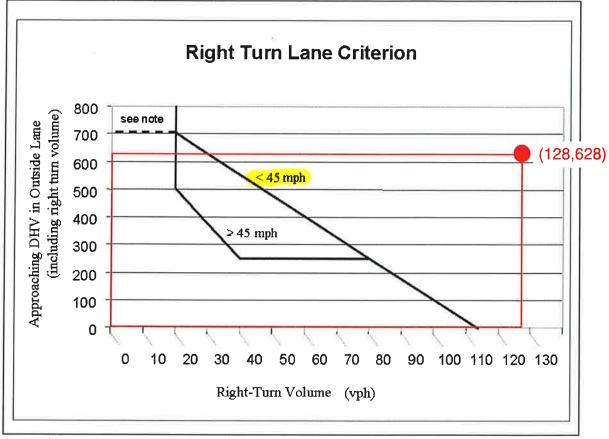

(Southbound Left-Turn Lane)


Left Turn Lane Evaluation Process

- A left turn lane should be installed, if criterion 1 (Volume) or 2 (Crash) or 3 (Special Cases) are met, unless a subsequent evaluation eliminate it as an option; and
- The Region Traffic Engineer must approve all proposed left turn lanes on state highways, regardless of funding source; and
- Left turn lane complies with Access Management Spacing Standards; and
- Left turn lane conforms to applicable local, regional and state plans.

Criterion 1: Vehicular Volume

The vehicular volume criterion is intended for application where the volume of intersecting traffic is the principal reason for considering installation of a left turn lane. The volume criterion is determined by the Texas Transportation Institute (TTI) curves in Exhibit 12-1.


^{*(}Advancing Volume/Number of Advancing Through Lanes) + (Opposing Volume/Number of Opposing Through Lanes)

Opposing left turns are not counted as opposing volumes

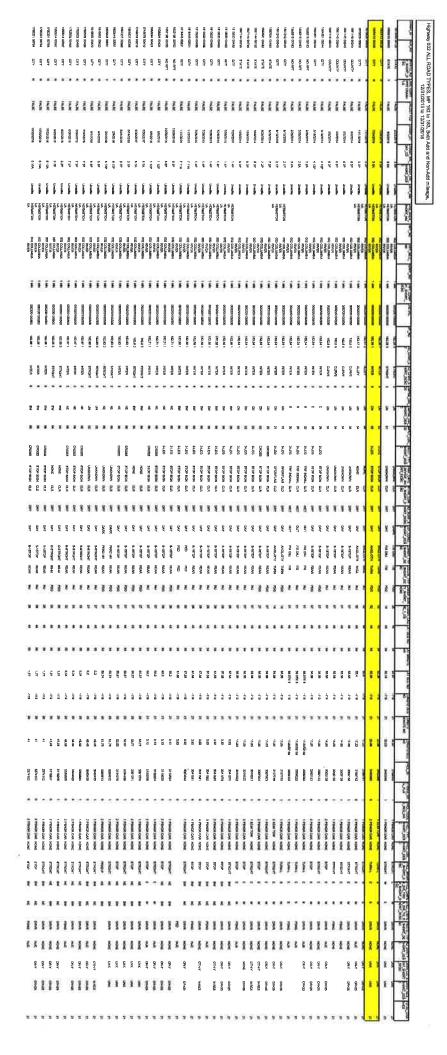
2030 Without Project Conditions at Powerline Road / Highway 730

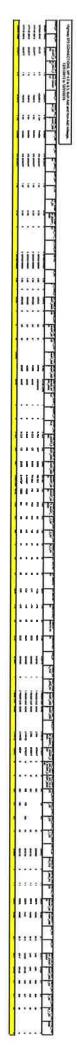
(Eastbound Right-Turn Lane)

Exhibit 12-2 Right Turn Lane Criterion

Note: If there is no right turn lane, a shoulder needs to be provided. If this intersection is in a rural area and is a connection to a public street, a right turn lane is needed.

Criterion 2: Crash Experience


The crash experience criterion is satisfied when:


- 1. Adequate trial of other remedies with satisfactory observance and enforcement has failed to reduce the accident frequency; and
- 2. A history of crashes of the type susceptible to correction by a right turn lane; and
- 3. The safety benefits outweigh the associated improvements costs; and
- 4. The installation of the right turn lane minimizes impacts to the safety of vehicles, bicycles or pedestrians along the roadway.

Criterion 3: Special Cases

1. Railroad Crossings: If a railroad is parallel to the roadway and adversely affects right turns, a worst case scenario should be used in determining the storage requirements for the right turn lane design. The right turn lane storage length depends on the amount of time the roadway is closed, the expected number of vehicle arrivals and the location of the crossing or other obstruction. The analysis should consider all of the variables influencing the design of the right turn lane and may allow a design for conditions other than the worst case storage requirements, providing safety is not

Appendix G Collision Rate Calculations and Data

Collision Rate Calculations at Powerline Road / HWY 730

Intersect	ion	Powerline Road / HWY 730	Date	4/5/2020
HILLISCEL	1011.	Towerine Road / 1100 1 750		4/3/2020
Ra = K =	-	Wide Average accident rate = al Constant =	0.6 1.645	
Average	Daily cars	s passing Through intersection	0 4310 1230 4870	
M=	Millions	of Vehicles for a five year period =	18.99825	
Rc=		Accident Rate =	0.87	
Acci	dent	Rate		
	Number	of accidents =	1	
	Number	of years =	5	
	Accident	: Rate =	0.05	
Rc = Ra + (1)	K*Ra/M) [,]	^.5)-1/(2*M)		
ADT = 20	20 PM Cou	unt X 10		

Collision Rate Calculations at Powerline Road / HWY 730

Intersect	ion: Powerline Road / Pine Tree Avenue	Date	4/5/2020
Ra = K = Average	System Wide Average accident rate = Statistical Constant = Daily cars passing Through intersection ADT	0.6 1.645 1030 120 1460	
M=	Millions of Vehicles for a five year period =	90 4.927 5	
Rc=	Critical Accident Rate =	1.07	
Acci	dent Rate		
	Number of accidents = Number of years =	2 5	
	Accident Rate =	0.41	
Rc= Ra+(K*Ra/M)^.5)-1/(2*M)		.et.(
ADT = 20	20 PM Count X 10		

Collision Rate Calculations at Powerline Road / HWY 730

Intersec	tion:	Powerline Road / Sparrow Avenue	Date	4/5/2020
Ra = K = Average	Statistica	Vide Average accident rate = l Constant = passing Through intersection	0.6 1.645 960 60 1440 70	ē
M=	Millions	of Vehicles for a five year period =	4.61725	
Rc=	Critical A	Accident Rate =	1.08	
Acci	ident	Rate		8
		of accidents = of years =	5	
	Accident	Rate =	0.00	
Rc= Ra+	(K*Ra/M)′	^.5)-1/(2*M)		
ADT = 20	020 PM Cou	ant X 10		

Collision Rate Calculations at Powerline Road / HWY 730

Intersec	tion: Powerline Road / Eagle Avenue	Date	4/5/2020
Ra = K = Average	System Wide Average accident rate = Statistical Constant = Daily cars passing Through intersection ADT	0.6 1.645 840 20	
M=	Millions of Vehicles for a five year period =	1420 40 4.234	
Rc=	Critical Accident Rate =	1.10	
Acci	ident Rate		
	Number of accidents = Number of years =	0 5	
	Accident Rate =	0.00	
Rc= Ra+	(K*Ra/M)^.5)-1/(2*M)		

ADT = 2020 PM Count X 10

Collision Rate Calculations at Powerline Road / HWY 730

Intersec	tion: Powerline Road / I-82 SB Ramp	Date	4/5/2020
Ra = K = Average	System Wide Average accident rate = Statistical Constant = Daily cars passing Through intersection ADT	0.6 1.645 840 580 1370	
M=	Millions of Vehicles for a five year period =	5.09175	
Rc=	Critical Accident Rate =	1.07	
Acc	ident Rate		
	Number of accidents = Number of years =	0 5	
	Accident Rate =	0.00	
Rc= Ra+	(K*Ra/M)^.5)-1/(2*M)		
ADT = 20	020 PM Count X 10		

Collision Rate Calculations at Powerline Road / HWY 730

Intersec	ion: Powerline Road / I-82 NB Ramp	Date	4/5/2020
Ra = K = Average	System Wide Average accident rate = Statistical Constant = Daily cars passing Through intersection ADT	0.6 1.645 1200 0 1600 280	
M=	Millions of Vehicles for a five year period =	5.621	
Rc=	Critical Accident Rate =	1.05	E
Acci	dent Rate		
	Number of accidents = Number of years =	<u> </u>	
	Accident Rate =	0.18	
Rc= Ra+	(K*Ra/M)^.5)-1/(2*M)		

ADT = 2020 PM Count X 10

Appendix H Mitigated Level of Service Calculations

ntersection	8 7%	y III	MI -85	are",	-750		150 - 150	The Market of the State of the
nt Delay, s/veh	36.8							
Movement	EBT	EBR	WBL	WBT	NBL	NBR		Harris San A Kima
ane Configurations	1	7	N	1	7	7		
raffic Vol, veh/h	500	223	410	354	130	253		
uture Vol, veh/h	500	223	410	354	130	253		
onflicting Peds, #/hr	0	2	2	0	0	0		
gn Control	Free	Free	Free	Free	Stop	Stop		
T Channelized	-	None		None		None		
torage Length	-	0	180	-	0	0		
eh in Median Storage	,# 0	8 8	· -	0	0	-		
rade, %	0	-		0	0	-		
eak Hour Factor	88	88	88	88	88	88		
eavy Vehicles, %	4	2		3	2	2		
lvmt Flow	568	253	466	402	148	288		
	/lajor1		Major2		Minor1	NVIII.	THE BUT THE	YN, MENER E
onflicting Flow All	0	0	823	0	1904	570		
Stage 1	- 1	- 1	*		570			
Stage 2	-	-	ä	-	1334	-		
itical Hdwy	-1		4.12		6.42	6.22		
itical Hdwy Stg 1	-		Ē	-	5.42	-		
tical Hdwy Stg 2		-	-	2 N.	5.42			
llow-up Hdwy		-		-	3.518			
t Cap-1 Maneuver		- III	807	100	~ 76	521		
Stage 1	ж	*		-	566	-		
Stage 2		1.00	1	-	246	-		
atoon blocked, %	2	-		Tar.				
ov Cap-1 Maneuver	5 8		805	1	~ 32	520	AND THE REAL PROPERTY.	
ov Cap-2 Maneuver	8	Ē	- 7	15	~ 87	. 150		
Stage 1			- 5		565			IN THE STREET
Stage 2	-	-	-	1091	~ 104) =)		
proach	EB		WB		NB	19.		
M Control Delay, s	0		8.3	T W	162.9			
CM LOS					F		(1	
nor Lane/Major Mvmt	N	IBLn1	VBLn2	EBT	EBR	WBL	WBT	
pacity (veh/h)		87	520	-		805		
M Lane V/C Ratio	1	1.698				0.579		
M Control Delay (s)		440.7	20.1	283	*	15.4	- 1	
M Lane LOS	15/4	F	С	-	: * 0:	С	140	
M 95th %tile Q(veh)		12.2	3.3	241	-	3.8	2 % . T IS T	
tes		DIE		×	100		ere X, II , J, X, E , E	
olume exceeds capa	acity.	\$ Do	lay exce	ande 20	lΩe ±	Come	utation Not Defined	*: All major valuma in alatean
rolume exceeds caps	acity	φ. De	iay cauc	icus JU	105 7	. Comp	ulation not Delined	*: All major volume in platoon

	-	*	1	←	4	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	4	7	N.	^	19	7	
Traffic Volume (veh/h)	500	223	410	354	130	253	
Future Volume (veh/h)	500	223	410	354	130	253	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Nork Zone On Approach	No			No	No		
Adj Sat Flow, veh/h/ln	1695	1723	1792	1709	1723	1723	
Adj Flow Rate, veh/h	568	84	466	402	148	168	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	
Percent Heavy Veh, %	4	2	2	3	2	2	
Cap, veh/h	695	597	561	1180	231	492	
Arrive On Green	0.41	0.41	0.20	0.69	0.14	0.14	
Sat Flow, veh/h	1695	1456	1706	1709	1641	1460	
Grp Volume(v), veh/h	568	84	466	402	148	168	
Grp Sat Flow(s), veh/h/ln	1695	1456	1706	1709	1641	1460	
Q Serve(g_s), s	14.1	1.7	6.3	4.5	4.0	4.1	
Cycle Q Clear(g_c), s	14.1	1.7	6.3	4.5	4.0	4.1	
Prop In Lane		1.00	1.00		1.00	1.00	
ane Grp Cap(c), veh/h	695	597	561	1180	231	492	
//C Ratio(X)	0.82	0.14	0.83	0.34	0.64	0.34	
vail Cap(c_a), veh/h	892	766	729	1547	311	563	
CM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
lpstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Iniform Delay (d), s/veh	12.4	8.8	8.5	3.0	19.3	11.8	
nor Delay (d2), s/veh	4.3	0.1	5.8	0.1	2.2	0.3	
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
lie BackOfQ(50%),veh/ln	4.6	0.4	2.1	0.4	1.5	1.1	
nsig. Movement Delay, s/veh							
nGrp Delay(d),s/veh	16.7	8.8	14.3	3.1	21.5	12.1	
nGrp LOS	В	Α	В	Α	С	В	
pproach Vol, veh/h	652			868	316		
pproach Delay, s/veh	15.7			9.1	16.5		
pproach LOS	В			Α	В		
Timer - Assigned Phs	1180	2	3	4	el e		8
hs Duration (G+Y+Rc), s		10.7	13.3	23.5			36.8
hange Period (Y+Rc), s		4.5	4.5	4.5			4.5
lax Green Setting (Gmax), s		8.5	13.5	24.5			42.5
lax Q Clear Time (g_c+l1), s		6.1	8.3	17.1			6.5
ireen Ext Time (p_c), s		0.2	0.6	1.9	143		1.9
itersection Summary	1	2.4			LX . 77	7 1	d 118-
CM 6th Ctrl Delay			12.7		. 1		
CM 6th LOS			В				

Critical Intersection Volume-to-Capacity Ratio						
Powerline Road / US Highway 730						
2030 With Project Conditions	PM Peak Hour					

	EB		WŖ		NB	
Critical Lane Group	EBT E	BR	WBL	WBT	NBL	NBR
Adj Flow Rate (veh/h)	568	84	466	402	148	168
Sat Flow (veh/h)	1695	1456	1706	1709	1641	1460
Critical Flow Ratios	0.34	0.06	0.27	0.24	0.09	0.12
Sum of Critical Flow Ratios	0.36					
Cycle Length	51.6 se	econds				
Lost Time per Phase	4 se	econds				
Total Lost Time	12 se	econds				

Critical Intersection V/C Ratio: 0.47

Method follows ODOT Analysis Procedures Manual, Version 2, Chapter 13.4.4.

Intersection		14 M						
Intersection Delay, s/veh	18.0							
Intersection LOS	C							
Approach	IIM III	EB	WE	Call Six		NB	والمراكب	
Entry Lanes		2			0	1		
Conflicting Circle Lanes		1	1			1		
Adj Approach Flow, veh/h		821	868	2 6		436		
Demand Flow Rate, veh/h		849	889			445		
Vehicles Circulating, veh/h		475	151			591		
Vehicles Exiting, veh/h		151	885			733		
Follow-Up Headway, s		3.186	3.186			3.186		
Ped Vol Crossing Leg, #/h		0	0			2		
Ped Cap Adj		1.000	1.000			1.000		
Approach Delay, s/veh		24.7	9.3			22.6		
Approach LOS		С	A			С		
Lane	Left	Right	Left	Bypass	Left	N JI II SA		ne.
Designated Moves	LT	R	L	R	LR	0 0 0	71.00	
Assumed Moves	LT	R	L	R	LR			
RT Channelized				Yield				
ane Util	0.696	0.304	1.000		1.000			
Critical Headway, s	5.193	5.193	5.193		5.193			
Entry Flow, veh/h	591	258	475	414	445			
Cap Entry Lane, veh/h	703	703	972	972	626			
Entry HV Adj Factor	0.962	0.981	0.981	0.971	0.980			
Flow Entry, veh/h	568	253	466	402	436			
Cap Entry, veh/h	676	689	953	943	613			
//C Ratio	0.841	0.367	0.489	0.426	0.711			
Control Delay, s/veh	31.2	10.1	9.8	8.8	22.6			
_OS	D	В	A	Α	C			
95th %tile Queue, veh	9	2	3	2	6			

ARTICLE E. LIVESTOCK RESIDENTIAL (LR)

10-3E-1: PURPOSE:

10-3E-2: USES PERMITTED:

10-3E-3: CONDITIONAL USES PERMITTED:

10-3E-4: DEVELOPMENT STANDARDS:

10-3E-5: LIMITATIONS ON USE

10-3E-1: PURPOSE:

The LR District is intended for low density, rural single-family residential uses in the Power City Area and other applicable areas. The LR District corresponds to the LR designation of the Comprehensive Plan.

10-3E-2: USES PERMITTED:

The following uses and their accessory uses are permitted in the LR District:

- A. Single-family dwelling subject to the provision of section 10-11-9 of this title;
- B. One manufactured home on an individual lot subject to the provisions of section 10-11-8 of this title:
- C. Residential home:
- D. Family day care provider;
- E. Home occupation subject to the provision of section 10-11-1 of this title; and
- F. Accessory uses, including an accessory dwelling subject to the provisions of section 10-11-11 of this title.
- G. Keeping and raising of horses, cattle, goats, sheep, and chickens in accordance with the limitations on use listed below.

10-3E-3: CONDITIONAL USES PERMITTED:

The following primary uses and their accessory uses may be permitted when authorized in accordance with the requirements of chapter 12 of this title:

A. Community services uses as provided by chapter 6 of this title.

10-3E-4: DEVELOPMENT STANDARDS:

DIMENSIONAL STANDARDS

Minimum lot area	10,000 square feet
Minimum lot width	60 feet

Minimum lot depth	100 feet
Minimum yard setbacks:	
Front and rear yard	15 feet
Side yard	10 feet
Side street yard	15 feet
Garage	18 feet from any street except an alley
Maximum building height	50 feet

10-3E-5: LIMITATIONS ON USE:

Permitted Animals. Unless classified as a household pet, only animals explicitly permitted in this Section (i.e., horses, cattle, goats, sheep, chickens) qualify as animals that may be kept as a Livestock Residential Animal.

Lot size requirement. Except as provided otherwise in this section, the total number of all animals (other than their young under the age of six months) allowed on a lot shall be limited to the square footages listed below for each adult animal or similar type of animal listed. These areas shall be exclusively for the animals.

(1)	Horses:	20,000 square feet
	Cattle:	20,000 square feet
	Llamas:	10,000 square feet
	Ostriches/emus:	10,000 square feet
	Sheep:	5,000 square feet
	Goats:	5,000 square feet

(2) The number of fowl or other poultry or rabbits over the age of six months shall not exceed one for each 2,000 square feet of unimproved lot area. The number of young (under the age of six months) allowed on the property at any time shall not exceed three times the allowable number of adults.

General Animal Care. Animals being kept in a residential environment must be cared for and monitored daily to maintain animal health and to prevent nuisance problems with

neighbors and the community. Animals may not be slaughtered in City Limits except for personal use or animal welfare.

Sanitation, Waste, and Odors. All animal structures and roaming areas must be kept sanitary and free from accumulations of animal excrement and objectionable odors. All structures and enclosures designed for animals shall be kept reasonably free and clean of flies, and accumulated animal waste materials, and shall be subject to health regulations (county, state or federal) as may be now hereafter established.

Animal Shelter. Barns, sheds, and other structures sheltering animals shall be located a minimum of 35 feet from a side or rear property line and 75 feet from the front property line; adequate fences and corrals shall be required of the animal owner to keep animals off adjacent lands.

Roosters. Roosters are not allowed in city limits.

- **4-H or FFA.** Domestic livestock kept solely for the purpose of a youth livestock project such as 4-H or FFA may be exempted from the square footage requirements of this section; provided, that the following conditions are complied with:
- (1) Evidence is provided to the City Planning Official that the youth is duly enrolled in a 4-H or FFA livestock project and an outline of the planned project, including animal types and numbers, is also provided.
- (2) Market/feeder hogs and roosters are permitted only when raised as an FFA or 4-H market animal project.
- (3) Failure to comply with the sanitation control and other requirements of this section may result in the cancellation of the exemption.

Two Options for discharge of firearm in city limits.

Option 1: Special shooting permit


The Chief of Police (or designee) may issue a special shooting permit to any resident in the LR Zone for the purpose of slaughtering an animal that resides on residents LR Zone property. Slaughter may only occur for personal use or animal welfare. A special shooting permit issued under this section shall include conditions and limitations as the Chief of Police or designee see fit for the protection of lives and property. A written request for a special shooting permit, in the form required by the City, must be submitted to the Chief of Police at least 7 calendar days prior to intended use.

Option 2: Two-hour notice

If the slaughtering of the animal involves the discharge of a firearm, notice shall be provided to the Umatilla police department at least two hours prior to the discharge of the firearm. The notice shall be made by phone to the Umatilla police department nonemergency number and shall include the location of the discharge, the time of the discharge, and the reason for discharge.

In both cases, the city code will need to be amended by the ordinance to allow the discharge of weapon. What will need to be changed:

5-1-3: USE OF WEAPONS: 🚭 🖼

- 1. It shall be unlawful for any person to discharge an air gun, BB gun, bow and arrow, bean shooter, blowgun, paintball gun, slingshot or other similar weapon or device on public property or any premises open to the public.
- 2. The offense described in this section, discharging air guns and nonfirearm weapons, is a class C violation.
- 3. It shall be unlawful for any person to discharge any type of firearm; provided, however, that nothing herein contained shall apply to any police officer while acting in the performance of duties or to any person lawfully using a firearm in defense of himself or protecting the life of another or to any person firing on a target range which has been constructed to standards as determined by pertinent building codes of the city, providing absolute entrapment of all fire rounds and control of all offensive noises.
- 4. The offense described in this section, discharging of firearms, is a class A violation. (Ord. 783, 8-5-2013)